

Data Analysis Expressions (DAX)
Reference
SQL Server 2012 Books Online

Summary: The Data Analysis Expressions (DAX) language is a library of functions and
operators that can be combined to build formulas and expressions.

Category: Reference
Applies to: SQL Server 2012
Source: SQL Server Books Online (link to source content)
E-book publication date: June 2012

http://msdn.microsoft.com/en-us/library/gg413422.aspx�

Copyright © 2012 by Microsoft Corporation
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents
Data Analysis Expressions (DAX) Reference .. 8

DAX Syntax Specification for PowerPivot .. 8

DAX Operator Reference for PowerPivot .. 15

Parameter-Naming Conventions ... 20

Understanding Functions for Parent-Child Hierarchies in DAX .. 22

DAX Function Reference .. 27
DAX Queries ... 27

DAX Query Syntax Reference... 28
Parameters for DAX Queries .. 29

Date and Time Functions .. 30
Time Intelligence Functions .. 31

CLOSINGBALANCEMONTH Function.. 32
CLOSINGBALANCEQUARTER Function .. 34
CLOSINGBALANCEYEAR Function .. 35
DATEADD Function .. 37
DATESBETWEEN Function ... 38
DATESINPERIOD Function ... 40
DATESMTD Function ... 41
DATESQTD Function .. 42
DATESYTD Function ... 44
ENDOFMONTH Function ... 45
ENDOFQUARTER Function .. 46
ENDOFYEAR Function ... 47
FIRSTDATE Function .. 49
FIRSTNONBLANK Function ... 50
LASTDATE Function ... 51
LASTNONBLANK Function .. 53
NEXTDAY Function... 54
NEXTMONTH Function ... 55
NEXTQUARTER Function.. 56
NEXTYEAR Function ... 58
OPENINGBALANCEMONTH Function ... 59
OPENINGBALANCEQUARTER Function.. 61
OPENINGBALANCEYEAR Function ... 62
PARALLELPERIOD Function... 64
PREVIOUSDAY Function ... 66
PREVIOUSMONTH Function ... 67
PREVIOUSQUARTER Function .. 69

PREVIOUSYEAR Function ... 70
SAMEPERIODLASTYEAR Function .. 71
STARTOFMONTH Function ... 73
STARTOFQUARTER Function .. 74
STARTOFYEAR Function ... 75
TOTALMTD Function ... 76
TOTALQTD Function .. 78
TOTALYTD Function... 79

DATE Function ... 81
DATEVALUE Function .. 85
DAY Function ... 86
EDATE Function ... 87
EOMONTH Function.. 89
HOUR Function ... 90
MINUTE Function ... 91
MONTH Function ... 92
NOW Function ... 94
SECOND Function .. 94
TIME Function .. 96
TIMEVALUE Function... 98
TODAY Function ... 99
WEEKDAY Function .. 99
WEEKNUM Function .. 101
YEAR Function ... 103
YEARFRAC Function ... 104

Filter Functions .. 106
ALL Function ... 107
ALLEXCEPT Function.. 112
ALLNOBLANKROW Function.. 114
ALLSELECTED Function ... 118
CALCULATE Function .. 126
CALCULATETABLE Function .. 128
DISTINCT Function ... 129
EARLIER Function.. 131
EARLIEST Function ... 134
FILTER Function ... 135
FILTERS Function... 137
HASONEFILTER Function ... 138
HASONEVALUE Function ... 139
ISCROSSFILTERED Function .. 141
ISFILTERED Function .. 145
KEEPFILTERS Function ... 148
RELATED Function .. 151
RELATEDTABLE Function ... 154
USERELATIONSHIP Function .. 155
VALUES Function .. 157

Information Functions .. 159
CONTAINS Function .. 160
CUSTOMDATA Function .. 161
ISBLANK Function... 161
ISERROR Function .. 162
ISLOGICAL Function .. 163
ISNONTEXT Function .. 164
ISNUMBER Function .. 165
ISTEXT Function... 166
LOOKUPVALUE Function ... 167
PATH Function ... 168
PATHCONTAINS Function ... 170
PATHITEM Function ... 171
PATHITEMREVERSE Function ... 172
PATHLENGTH Function .. 174
USERNAME Function... 174

Logical Functions .. 175
AND Function .. 176
FALSE Function .. 179
IF Function... 180
IFERROR Function... 181
NOT Function ... 182
OR Function .. 183
SWITCH Function.. 186
TRUE Function ... 187

Math and Trig Functions ... 188
ABS Function .. 189
CEILING Function .. 190
CURRENCY Function ... 192
EXP Function .. 193
FACT Function.. 194
FLOOR Function .. 195
INT Function ... 196
ISO.CEILING Function.. 197
LN Function .. 199
LOG Function ... 199
LOG10 Function .. 200
MOD Function ... 201
MROUND Function .. 202
PI Function .. 203
POWER Function ... 204
QUOTIENT Function .. 205
RAND Function .. 206
RANDBETWEEN Function .. 207
ROUND Function .. 207
ROUNDDOWN Function .. 209

ROUNDUP Function .. 210
SIGN Function .. 212
SQRT Function ... 213
SUM Function .. 213
SUMX Function .. 214
TRUNC Function ... 215

Statistical Functions ... 216
ADDCOLUMNS Function ... 218
AVERAGE Function ... 219
AVERAGEA Function .. 221
AVERAGEX Function .. 222
COUNT Function ... 223
COUNTA Function .. 224
COUNTAX Function ... 225
COUNTBLANK Function ... 226
COUNTROWS Function .. 227
COUNTX Function .. 229
CROSSJOIN Function ... 230
DISTINCTCOUNT Function.. 232
GENERATE Function ... 233
GENERATEALL Function ... 236
MAX Function .. 239
MAXA Function ... 240
MAXX Function.. 241
MIN Function ... 242
MINA Function .. 243
MINX Function... 245
RANK.EQ Function .. 246
RANKX Function.. 248
ROW Function.. 251
STDEV.S Function ... 252
STDEV.P Function ... 253
STDEVX.S Function ... 254
STDEVX.P Function... 255
SUMMARIZE Function .. 256
TOPN Function .. 263
VAR.S Function .. 265
VAR.P Function .. 266
VARX.S Function ... 267
VARX.P Function ... 268

Text Functions.. 270
BLANK Function .. 271
CONCATENATE Function ... 272
EXACT Function ... 274
FIND Function .. 275
FIXED Function .. 276

FORMAT Function .. 278
Pre-Defined Numeric Formats for the FORMAT Function .. 279
Custom Numeric Formats for the FORMAT Function ... 281
Pre-defined Date and Time formats for the FORMAT Function ... 287
Custom Date and Time formats for the FORMAT Function ... 287

LEFT Function ... 291
LEN Function .. 292
LOWER Function ... 293
MID Function ... 294
REPLACE Function .. 295
REPT Function .. 296
RIGHT Function ... 298
SEARCH Function ... 299
SUBSTITUTE Function ... 301
TRIM Function.. 302
UPPER Function ... 303
VALUE Function... 304

Formula Compatibility in DirectQuery Mode .. 305

 8

Data Analysis Expressions (DAX) Reference
The Data Analysis Expressions (DAX) language is a library of functions and operators that
can be combined to build formulas and expressions. This section provides topics that
describe function syntax and other attributes of the DAX language.
For an overview of how you can use DAX formulas, see Getting Started with Data
Analysis Expressions (DAX).

In this Section
DAX Syntax Specification
Operator Reference
Function Reference

See Also
Key Concepts in DAX
Data Types Supported in PowerPivot Workbooks

DAX Syntax Specification for PowerPivot
Data Analysis Expressions (DAX) is a library of functions, operators, and constants that
can be combined to build formulas and expressions in PowerPivot for Excel. This section
provides details about the syntax and requirements of the DAX language.
For examples of the kinds of formulas that you can build, and how you can use
expressions to filter tables and change context, see Getting Started with Data Analysis
Expressions (DAX). This topic contains the following sections:
Syntax Requirements
Naming Requirements
Functions
Operators and Constants
Data Types

Syntax Requirements
DAX formulas are very similar to the formulas you type in Excel tables, but there are
some key differences.
• In Microsoft Excel you can reference individual cells or arrays; in PowerPivot you can

reference only complete tables or columns of data. However, If you need to work

http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/f8842f16-2353-4bbc-88d5-25d7a30cee13(SQL.110)�
http://msdn.microsoft.com/en-us/library/48f23cba-07df-4a0e-b077-8ffccd344552(SQL.110)�
http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�

 9

with only part of a column, or with unique values from a column, you can achieve
similar behavior by using DAX functions that filter the column or return unique
values.

• DAX formulas do not support exactly the same data types as Microsoft Excel. In
general, DAX provides more data types than Excel does, and DAX performs implicit
type conversions on some data when importing. For more information, see Data
Types in DAX.

A DAX formula always starts with an equal sign (=). After the equals sign, you can
provide any expression that evaluates to a scalar, or an expression that can be converted
to a scalar. These include the following:
• A scalar constant, or expression that uses a scalar operator (+,-,*,/,>=,...,&&, ...)
• References to columns or tables. The DAX language always uses tables and columns

as inputs to functions, never an array or arbitrary set of values.
• Operators, constants, and values provided as part of an expression.
• The result of a function and its required arguments. Some DAX functions return a

table instead of a scalar, and must be wrapped in a function that evaluates the table
and returns a scalar; unless the table is a single column, single row table, then it is
treated as a scalar value.
Most PowerPivot functions require one or more arguments, which can include tables,
columns, expressions, and values. However, some functions, such as PI, do not
require any arguments, but always require parentheses to indicate the null argument.
For example, you must always type PI(), not PI. You can also nest functions within
other functions.

• Expressions. An expression can contain any or all of the following: operators,
constants, or references to columns.

For example, the following are all valid formulas.

Formula Result

=3 3

="Sales" Sales

='Sales'[Amount] If you use this formula within the Sales
table, you will get the value of the column
Amount in the Sales table for the current
row.

=(0.03 *[Amount])
=0.03 * [Amount]

Three percent of the value in the Amount
column of the current table.
Although this formula can be used to
calculate a percentage, the result is not

http://msdn.microsoft.com/en-us/library/f25c29c9-0e43-40c6-94cb-4d497dbbf6e2(SQL.110)�
http://msdn.microsoft.com/en-us/library/f25c29c9-0e43-40c6-94cb-4d497dbbf6e2(SQL.110)�

 10

Formula Result

shown as a percentage unless you apply
formatting in the table.

=PI() The value of the constant pi.

Formulas can behave differently depending on whether they are used in a
calculated column, or in a measure within a PivotTable. You must always be
aware of the context and how the data that you use in the formula is related to
other data that might be used in the calculation. For more information,
see Context in DAX Formulas.

Naming Requirements
A PowerPivot window can contain multiple tables, each on its own tab. Together the
tables and their columns comprise a database stored in the PowerPivot xVelocity in-
memory analytics engine (VertiPaq). Within that database, all tables must have unique
names. The names of columns must also be unique within each table. All object names
are case-insensitive; for example, the names SALES and Sales would represent the same
table.
Each column and measure that you add to an existing PowerPivot database must belong
to a specific table. You specify the table that contains the column either implicitly, when
you create a calculated column within a table, or explicitly, when you create a measure
and specify the name of the table where the measure definition should be stored.
When you use a table or column as an input to a function, you must generally qualify the
column name. The fully qualified name of a column is the table name, followed by the
column name in square brackets: for examples, 'U.S. Sales'[Products]. A fully qualified
name is always required when you reference a column in the following contexts:
• As an argument to the function, VALUES
• As an argument to the functions, ALL or ALLEXCEPT
• In a filter argument for the functions, CALCULATE or CALCULATETABLE
• As an argument to the function, RELATEDTABLE
• As an argument to any time intelligence function
An unqualified column name is just the name of the column, enclosed in brackets: for
example, [Sales Amount]. For example, when you are referencing a scalar value from the
same row of the current table, you can use the unqualified column name.
If the name of a table contains spaces, reserved keywords, or disallowed characters, you
must enclose the table name in single quotation marks. You must also enclose table
names in quotation marks if the name contains any characters outside the ANSI

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�

 11

alphanumeric character range, regardless of whether your locale supports the character
set or not. For example, if you open a workbook that contains table names written in
Cyrillic characters, such as ‘Таблица’, the table name must be enclosed in quotation
marks, even though it does not contain spaces.

To make it easier to enter the fully qualified names of columns, we recommend
that you use the formula AutoComplete feature in the client.

Tables
• Table names are required whenever the column is from a different table than the

current table. Table names must be unique within the database.
• Table names must be enclosed in single quotation marks if they contain spaces,

other special characters or any non-English alphanumeric characters.

Measures
• Measure names must always be in brackets.
• Measure names can contain spaces.
• Each measure name must be unique within a database. Therefore, the table name is

optional in front of a measure name when referencing an existing measure. However,
when you create a measure you must always specify a table where the measure
definition will be stored.

Columns
Column names must be unique in the context of a table; however, multiple tables can
have columns with the same names (disambiguation comes with the table name).
In general, columns can be referenced without referencing the base table that they
belong to, except when there might be a name conflict to resolve or with certain
functions that require column names to be fully qualified.

Reserved Keywords
If the name that you use for a table is the same as an Analysis Services reserved keyword,
an error is raised, and you must rename the table. However, you can use keywords in
object names if the object name is enclosed in brackets (for columns) or quotation marks
(for tables).

Note that quotation marks can be represented by several different characters,
depending on the application. If you paste formulas from an external document
or Web page, make sure to check the ASCII code of the character that is used for
opening and closing quotes, to ensure that they are the same. Otherwise DAX

Note

Note

 12

may be unable to recognize the symbols as quotation marks, making the
reference invalid.

Special Characters
The following characters and character types are not valid in the names of tables,
columns, or measures:
• Leading or trailing spaces; unless the spaces are enclosed by name delimiters,

brackets, or single apostrophes.
• Control characters
• The following characters that are not valid in the names of PowerPivot objects:

.,;':/*|?&%$!+=()[]{}<>

Examples of Object Names
The following table shows examples of some object names:

Object Types Examples Comment

Table name

Sales

If the table name does not
contain spaces or other
special characters, the
name does not need to be
enclosed in quotation
marks.

Table name ‘Canada Sales’

If the name contains
spaces, tabs or other
special characters, enclose
the name in single
quotation marks.

Fully qualified column
name

Sales[Amount] The table name precedes
the column name, and the
column name is enclosed in
brackets.

Fully qualified measure
name

Sales[Profit] The table name precedes
the measure name, and the
measure name is enclosed
in brackets. In certain
contexts, a fully qualified
name is always required.

Unqualified column name [Amount] The unqualified name is just

 13

the column name, in
brackets. Contexts where
you can use the unqualified
name include formulas in a
calculated column within
the same table, or in an
aggregation function that is
scanning over the same
table.

Fully qualified column in
table with spaces

‘Canada Sales’[Qty] The table name contains
spaces, so it must be
surrounded by single
quotes.

To make it easier to enter the fully qualified names of columns, we recommend
that you use the AutoComplete feature when building formulas. For more
information, see Building Formulas for Calculated Columns and Measures.

Miscellaneous Restrictions
The syntax required for each function, and the type of operation it can perform, varies
greatly depending on the function. In general, however, the following rules apply to all
formulas and expressions:
• DAX formulas and expressions cannot modify or insert individual values in tables.
• You cannot create calculated rows by using DAX. You can create only calculated

columns and measures.
• When defining calculated columns, you can nest functions to any level.
• DAX has several functions that return a table. Typically, you use the values returned

by these functions as input to other functions, which require a table as input.

Functions in DAX
DAX provides the following types of functions.
• Date and Time Functions
• Filter Functions
• Information Functions
• Logical Functions
• Math and Trigonometric Functions
• Statistical Functions

Note

http://msdn.microsoft.com/en-us/library/ff073508-2832-4017-ba29-87f559f2b635(SQL.110)�

 14

• Text Functions

DAX Operators and Constants
The following table lists the operators that are supported by DAX. In general, operators
in DAX behave the same way that they do in Microsoft Excel, with some minor
exceptions. For more information about the syntax of individual operators, see Operator
Reference.

Operator Type Symbol and Use

Parenthesis operator () precedence order and grouping of
arguments

Arithmetic operators + (addition)
- (subtraction/
sign)
* (multiplication)
/ (division)
^ (exponentiation)

Comparison operators = (equal to)
> (greater than)
< (less than)
>= (greater than or equal to)
<= (less than or equal to)
<> (not equal to)

Text concatenation operator & (concatenation)

Logic operators && (and)
|| (or)

Data Types in DAX
You do not need to cast, convert, or otherwise specify the data type of a column or value
that you use in a DAX formula. When you use data in a DAX formula, DAX automatically
identifies the data types in referenced columns and of the values that you type in, and
performs implicit conversions where necessary to complete the specified operation.
For example, if you try to add a number to a date value, PowerPivot will interpret the
operation in the context of the function, like Excel does, and convert the numbers to a
common data type, and then present the result in the intended format, a date.

 15

However, there are some limitations on the values that can be successfully converted. If a
value or a column has a data type that is incompatible with the current operation, DAX
returns an error. Also, DAX does not provide functions that let you explicitly change,
convert, or cast the data type of existing data that you have imported into a PowerPivot
workbook.

PowerPivot does not support use of the variant data type used in Excel.
Therefore, when you load or import data, it is expected that the data in each
column is generally of a consistent data type.

Some functions return scalar values, including strings, whereas other functions work with
numbers, both integers and real numbers, or dates and times. The data type required for
each function is described in the section, Function Reference.
Tables are a new data type in PowerPivot. You can use tables containing multiple
columns and multiple rows of data as the argument to a function. Some functions also
return tables, which are stored in memory and can be used as arguments to other
functions.
For more information about the different numeric and date/time data types, and for
details on the handling of nulls and empty strings, see Data Types Supported in
PowerPivot Workbooks.

See Also
Build a formula

DAX Operator Reference for PowerPivot
The Data Analysis Expression (DAX) language uses operators to create expressions that
compare values, perform arithmetic calculations, or work with strings. This section
describes the use of each operator.

Types of Operators
There are four different types of calculation operators: arithmetic, comparison, text
concatenation, and logical.

Arithmetic Operators
To perform basic mathematical operations such as addition, subtraction, or
multiplication; combine numbers; and produce numeric results, use the following
arithmetic operators.

Important

http://msdn.microsoft.com/en-us/library/f25c29c9-0e43-40c6-94cb-4d497dbbf6e2(SQL.110)�
http://msdn.microsoft.com/en-us/library/f25c29c9-0e43-40c6-94cb-4d497dbbf6e2(SQL.110)�
http://msdn.microsoft.com/en-us/library/ff073508-2832-4017-ba29-87f559f2b635(SQL.110)�

 16

Arithmetic operator Meaning Example

+ (plus sign) Addition 3+3

– (minus sign) Subtraction or sign 3–1–1

* (asterisk) Multiplication 3*3

/ (forward slash) Division 3/3

^ (caret) Exponentiation 16^4

The plus sign can function both as a binary operator and as a unary operator. A
binary operator requires numbers on both sides of the operator and performs
addition. When you use values in a DAX formula on both sides of the binary
operator, DAX tries to cast the values to numeric data types if they are not
already numbers. In contrast, the unary operator can be applied to any type of
argument. The plus symbol does not affect the type or value and is simply
ignored, whereas the minus operator creates a negative value, if applied to a
numeric value.

Comparison Operators
You can compare two values with the following operators. When two values are
compared by using these operators, the result is a logical value, either TRUE or FALSE.

Comparison operator Meaning Example

= Equal to [Region] = "USA"

> Greater than [Sales Date] > "Jan 2009"

< Less than [Sales Date] < "Jan 1 2009"

>= Greater than or equal to [Amount] >= 20000

<= Less than or equal to [Amount] <= 100

<> Not equal to [Region] <> "USA"

Text Concatenation Operator
Use the ampersand (&) to join, or concatenate, two or more text strings to produce a
single piece of text.

Note

 17

Text operator Meaning Example

& (ampersand) Connects, or concatenates,
two values to produce one
continuous text value

[Region] & ", " & [City]

Logical Operators
Use logical operators (&&) and (||) to combine expressions to produce a single result.

Text operator Meaning Examples

&& (double ampersand) Creates an AND condition
between two expressions
that each have a Boolean
result. If both expressions
return TRUE, the
combination of the
expressions also returns
TRUE; otherwise the
combination returns FALSE.

([Region] = "France") &&
([BikeBuyer] = "yes"))

|| (double pipe symbol) Creates an OR condition
between two logical
expressions. If either
expression returns TRUE, the
result is TRUE; only when
both expressions are FALSE
is the result FALSE.

(([Region] = "France") ||
([BikeBuyer] = "yes"))

Operators and Precedence Order
In some cases, the order in which calculation is performed can affect the return value;
therefore, it is important to understand how the order is determined and how you can
change the order to obtain the desired results.

Calculation Order
An expression evaluates the operators and values in a specific order. All expressions
always begin with an equal sign (=). The equal sign indicates that the succeeding
characters constitute an expression.

 18

Following the equal sign are the elements to be calculated (the operands), which are
separated by calculation operators. Expressions are always read from left to right, but the
order in which the elements are grouped can be controlled to some degree by using
parentheses.

Operator Precedence
If you combine several operators in a single formula, the operations are ordered
according to the following table. If the operators have equal precedence value, they are
ordered from left to right. For example, if an expression contains both a multiplication
and division operator, they are evaluated in the order that they appear in the expression,
from left to right.

Operator Description

^ Exponentiation

– Sign (as in –1)

* and / Multiplication and division

! NOT (unary operator)

+ and – Addition and subtraction

& Connects two strings of text
(concatenation)

=< ><=>=<> Comparison

Using Parentheses to Control Calculation Order
To change the order of evaluation, you should enclose in parentheses that part of the
formula that must be calculated first. For example, the following formula produces 11
because multiplication is calculated before addition. The formula multiplies 2 by 3, and
then adds 5 to the result.
=5+2*3

In contrast, if you use parentheses to change the syntax, the order is changed so that 5
and 2 are added together, and the result multiplied by 3 to produce 21.

=(5+2)*3

In the following example, the parentheses around the first part of the formula force the
calculation to evaluate the expression (3 + 0.25) first and then divide the result by the
result of the expression, (3 - 0.25).

=(3 + 0.25)/(3 - 0.25)

 19

In the following example, the exponentiation operator is applied first, according to the
rules of precedence for operators, and then the sign operator is applied. The result for
this expression is -4.
=-2^2

To ensure that the sign operator is applied to the numeric value first, you can use
parentheses to control operators, as shown in the following example. The result for this
expression is 4.

= (-2)^2

Compatibility Notes
DAX easily handles and compares various data types, much like Microsoft Excel.
However, the underlying computation engine is based on SQL Server Analysis Services
and provides additional advanced features of a relational data store, including richer
support for date and time types. Therefore, in some cases the results of calculations or
the behavior of functions may not be the same as in Excel. Moreover, DAX supports
more data types than does Excel. This section describes the key differences.

Coercing Data Types of Operands
In general, the two operands on the left and right sides of any operator should be the
same data type. However, if the data types are different, DAX will convert them to a
common data type for comparison, as follows:
1. First, both operands are converted to the largest possible common data type.
2. Next, the operands are compared.
For example, suppose you have two numbers that you want to combine. One number
results from a formula, such as =[Price] * .20, and the result may contain many
decimal places. The other number is an integer that has been provided as a string value.
In this case, DAX will convert both numbers to real numbers in a numeric format, using
the largest numeric format that can store both kinds of numbers. Then DAX will compare
the values.
In contrast, Excel tries to compare values of different types without first coercing them to
a common type. For this reason, you may see different results in DAX than in Excel for
the same comparison expression.

Data Types used in DAX Data Types used in Excel

Numbers (I8, R8)
Boolean
String
DateTime

Numbers (R8)
Boolean
String
Variant

 20

Data Types used in DAX Data Types used in Excel

Currency Currency

For more information about implicit data type conversion, see Data Types Supported in
PowerPivot Workbooks.

Differences in Precedence Order
The precedence order of operations in DAX formulas is basically the same as that used
by Microsoft Excel, but some Excel operators are not supported, such as percent. Also,
ranges are not supported.
Therefore, whenever you copy and paste formulas from Excel, be sure to review the
formula carefully, as some operators or elements in the formulas may not be valid. When
there is any doubt about the order in which operations are performed, we recommend
that you use parentheses to control the order of operations and remove any ambiguity
about the result.

See Also
Basic DAX Syntax
Using Data Analysis Expressions

Parameter-Naming Conventions
Parameter names are standardized in DAX reference to facilitate the usage and
understanding of the functions.

Parameter Names

Parameter Description

expression Any DAX expression that returns a single
scalar value, where the expression is to be
evaluated multiple times (for each
row/context).

value Any DAX expression that returns a single
scalar value where the expression is to be
evaluated exactly once before all other
operations.

table Any DAX expression that returns a table of

http://msdn.microsoft.com/en-us/library/48f23cba-07df-4a0e-b077-8ffccd344552(SQL.110)�
http://msdn.microsoft.com/en-us/library/48f23cba-07df-4a0e-b077-8ffccd344552(SQL.110)�
http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�

 21

data.

tableName The name of an existing table using
standard DAX syntax. It cannot be an
expression.

columnName The name of an existing column using
standard DAX syntax, usually fully qualified.
It cannot be an expression.

name A string constant that will be used to
provide the name of a new object.

order An enumeration used to determine the sort
order.

ties An enumeration used to determine the
handling of tie values.

type An enumeration used to determine the
data type for PathItem and
PathItemReverse.

Prefixing parameter names or using the prefix only

prefixing Parameter names may be further qualified
with a prefix that is descriptive of how the
argument is used and to avoid ambiguous
reading of the parameters. For example:

Result_ColumnName Refers to an
existing column
used to get the
result values in
the
LOOKUPVALUE()
function.

Search_ColumnName Refers to an
existing column
used to search
for a value in the

 22

LOOKUPVALUE()
function.

omitting Parameter names will be omitted if the
prefix is clear enough to describe the
parameter.
For example, instead of having the
following syntax DATE (Year_Value,
Month_Value, Day_Value) it is clearer for
the user to read DATE (Year, Month, Day);
repeating three times the suffix value does
not add anything to a better
comprehension of the function and it
clutters the reading unnecessarily.
However, if the prefixed parameter is
Year_columnName then the parameter
name and the prefix will stay to make sure
the user understands that the parameter
requires a reference to an existing column
of Years.

Understanding Functions for Parent-Child
Hierarchies in DAX
DAX provides five functions to help users manage data that is presented as a parent-
child hierarchy in their models. With this functions a user can obtain the entire lineage of
parents a row has, how many levels has the lineage to the top parent, who is the parent
n-levels above the current row, who is the n-descendant from the top of the current row
hierarchy and is certain parent a parent in the current row hierarchy?

Parent-Child functions in DAX
The following table contains a Parent-Child hierarchy on the columns: EmployeeKey and
ParentEmployeeKey that is used in all the functions examples.

EmployeeKey ParentEmployeeKey

 23

112

14 112

3 14

11 3

13 3

162 3

117 162

221 162

81 162

In the above table you can see that employee 112 has no parent defined, employee 14
has employee 112 as manager (ParentEmployeeKey), employee 3 has employee 14 as
manager and employees 11, 13, and 162 have employee 3 as manager. The above helps
to understand that employee 112 has no manager above her/him and she/he is the top
manager for all employees shown here; also, employee 3 reports to employee 14 and
employees 11, 13, 162 report to 3.
The following table presents the available functions, a brief description of the function
and an example of the function over the same data shown above.

Function Description / Example

PATH Function
(DAX)

Returns a delimited text with the identifiers of all the parents to the
current row, starting with the oldest or top most until current.
In the following example column ‘Path’ is defined as
'=PATH(EmployeeKey, ParentEmployeeKey)'

EmployeeKey ParentEmployeeKey Path

112 112

14 112 112|14

3 14 112|14|3

11 3 112|14|3|11

13 3 112|14|3|13

162 3 112|14|3|162

 24

Function Description / Example

117 162 112|14|3|162|117

221 162 112|14|3|162|221

81 162 112|14|3|162|81

PATHLENGTH
Function (DAX)

Returns the number of levels in a given PATH(), starting at current
level until the oldest or top most parent level.
In the following example column PathLength is defined as
‘=PATHLENGTH([Path])’; the example includes all data from the
Path() example to help understand how this function works.

EmployeeKey ParentEmployeeKey Path PathLength

112 112 1

14 112 112|14 2

3 14 112|14|3 3

11 3 112|14|3|11 4

13 3 112|14|3|13 4

162 3 112|14|3|162 4

117 162 112|14|3|162|117 5

221 162 112|14|3|162|221 5

81 162 112|14|3|162|81 5

PATHITEM
Function (DAX)

Returns the item at the specified position from a PATH() like result,
counting from left to right.
In the following example column PathItem - 4th from left is defined
as ‘=PATHITEM([Path], 4)’; this example returns the EmployeKey
at fourth position in the Path string from the left, using the same
sample data from the Path() example.

 25

Function Description / Example

EmployeeKey ParentEmployeeKey Path PathItem -
4th from
left

112 112

14 112 112|14

3 14 112|14|3

11 3 112|14|3|11 11

13 3 112|14|3|13 13

162 3 112|14|3|162 162

117 162 112|14|3|162|117 162

221 162 112|14|3|162|221 162

81 162 112|14|3|162|81 162

PATHITEMREVERS
E Function (DAX)

Returns the item at position from a PATH() like function result,
counting backwards from right to left.
In the following example column PathItemReverse - 3rd from right is
defined as ‘=PATHITEMREVERSE([Path], 3)’; this example returns
the EmployeKey at third position in the Path string from the right,
using the same sample data from the Path() example.

EmployeeKey ParentEmployeeKey Path PathItemReverse
- 3rd from right

112 112

14 112 112|14

3 14 112|14|3 112

11 3 112|14|3|11 14

13 3 112|14|3|13 14

162 3 112|14|3|162 14

117 162 112|14|3|162|117 3

 26

Function Description / Example

221 162 112|14|3|162|221 3

81 162 112|14|3|162|81 3

PATHCONTAINS
Function (DAX)

Returns TRUE if the specified item exists within the specified path.
In the following example column PathContains - employee 162 is
defined as ‘=PATHCONTAINS([Path], "162")’; this example returns
TRUE if the given path contains employee 162. This example uses
the results from the Path() example above.

EmployeeKe
y

ParentEmployeeKe
y

Path PathContain
s -
employee
162

112 112 FALSE

14 112 112|14 FALSE

3 14 112|14|3 FALSE

11 3 112|14|3|11 FALSE

13 3 112|14|3|13 FALSE

162 3 112|14|3|162 TRUE

117 162 112|14|3|162|11
7

TRUE

In SQL Server 2012 Analysis Services, the xVelocity in-memory analytics engine
(VertiPaq) does not support the definition of parent-child hierarchies; however,
the DAX language provides a set of functions that allows users to explore parent-
child hierarchies and to use these hierarchies in formulas.

Warning

 27

DAX Function Reference
This section provides detailed syntax for the functions and operators used in Data
Analysis Expression formulas, together with examples. For general information about
DAX, see DAX Reference.

In this Section
DAX Table Queries
Date and Time Functions (DAX)
Filter Functions (DAX)
Information Functions (DAX)
Logical Functions (DAX)
Math and Trigonometric Functions (DAX)
Statistical Functions (DAX)
Text Functions (DAX)

See Also
Operator Reference (DAX)
DAX Syntax Specification

DAX Queries
The DAX language offers a new syntax to return table data from a query.

In this Section
In this section you will find:
Table Query syntax reference
Parameters for Table Queries

Reference
• Execute Method (XMLA)
• Statement Element (XMLA)

Related Sections

http://msdn.microsoft.com/en-us/library/0fff5221-7164-4bbc-ab58-49cf04c52664(SQL.110)�
http://msdn.microsoft.com/en-us/library/bfedc03c-d476-4d55-b5fd-36169f01351a(SQL.110)�

 28

DAX Query Syntax Reference
DAX queries allow the user to retrieve data defined by a table expression from the
xVelocity in-memory analytics engine (VertiPaq). The user can create measures as part of
the query; these measures exist only for the duration of the query.
Syntax
[DEFINE { MEASURE <tableName>[<name>] = <expression> }
EVALUATE <table>
[ORDER BY {<expression> [{ASC | DESC}]}[, …]
 [START AT {<value>|<parameter>} [, …]]]
Parameters

Parameter Description

DEFINE clause An optional clause of the query statement that
allows the user to define measures for the
duration of the query. Definitions can reference
other definitions that appear before or after the
current definition.

tableName The name of an existing table using standard
DAX syntax. It cannot be an expression.

name The name of a new measure. It cannot be an
expression.

expression Any DAX expression that returns a single scalar
value.

EVALUATE clause Contains the table expression that generates the
results of the query. The expression can use any
of the defined measures.

The expression must return a table. If a scalar
value is required, the person authoring the
measure can wrap their scalar inside a ROW()
function to produce a table that contains the
required scalar.

ORDER BY clause Optional clause that defines the expression(s)
used to sort the query results. Any expression
that can be evaluated for each row of the result
is valid.

START AT sub-clause Optional clause, inside an ORDER BY clause,
that defines the values at which the query

 29

results will start. The START AT clause is part of
the ORDER BY clause and cannot be used
outside it.

In an ordered set of results, the START AT
clause defines the starting row for the result set.

The START AT arguments have a one to one
correspondence with the columns in the ORDER
BY clause; there can be as many arguments in
the START AT clause as there are in the ORDER
BY clause, but not more. The first argument in
the START AT defines the starting value in
column 1 of the ORDER BY columns. The
second argument in the START AT defines the
starting value in column 2 of the ORDER BY
columns within the rows that meet the first value
for column 1.

value A constant value; it cannot be an expression.

parameter The name of a parameter in the XMLA statement
prefixed with an @ character. For more
information, see Parameters for DAX
Queries.

Return Value
A table of data.
Code Examples
For examples of using DAX queries, see this site.

Parameters for DAX Queries
This topic illustrates how to pass parameter values in an XMLA structure to a DAX query
statement.
Parameters in XMLA and DAX queries
A well-defined DAX query statement would benefit enormously by being able to be
parameterized and then used, over and over, with just changes in the parameter values.
The Execute method, in XMLA, has a Parameters collection element that allows
parameters to be defined and assigned a value; within the collection, each Parameter
element defines the name of the parameter and a value to it.
The DAX query syntax allows you to reference XMLA parameters by prefixing the name,
of the parameter, with an @ character. Hence, any place in the syntax where a value is

http://msdn.microsoft.com/en-us/library/0fff5221-7164-4bbc-ab58-49cf04c52664(SQL.110)�
http://msdn.microsoft.com/en-us/library/d46454a1-a1d1-4aa8-95ea-54be22a53e83(SQL.110)�
http://msdn.microsoft.com/en-us/library/fe31ac3d-a3e8-4f60-a81a-c43271ddbed4(SQL.110)�

 30

allowed it can be replaced with a parameter call. However, one thing needs to be
remembered: all XMLA parameters are typed as text.

Parameters defined in the parameters section and not used in the
<STATEMENT> element generate an error response in XMLA.

Parameters used and not defined in the <Parameters> element generate an
error response in XMLA.

Code Examples
For examples of using DAX queries, see this site.

Date and Time Functions
Many of the date and time functions in DAX are very similar to the Excel date and time
functions. However, DAX functions use a datetime data type, and can take values from a
column as an argument. DAX also includes a set of time intelligence functions that enable
you to manipulate data using time periods, including days, months, quarters, and years,
and then build and compare calculations over those periods.

In this Section
Time Intelligence Functions (DAX)
DATE Function
DATEVALUE Function (DAX)
DAY Function
EDATE Function
EOMONTH Function
HOUR Function
MINUTE Function
MONTH Function
NOW Function
SECOND Function
TIME Function (DAX)
TIMEVALUE Function (DAX)
TODAY Function
WEEKDAY Function
WEEKNUM Function
YEAR Function

Warning

Warning

 31

YEARFRAC Function

Reference
Using DAX
Basic DAX Syntax

Related Sections
Date and Time Functions (DAX)
Aggregation Functions (DAX)
Logical Functions (DAX)
Filter and Value Functions (DAX)
Math and Trigonometric Functions (DAX)

See Also
Getting Started with Data Analysis Expressions (DAX)

Time Intelligence Functions
Data Analysis Expressions (DAX) includes time intelligence functions to support the
needs of Business Intelligence analysis by enabling you to manipulate data using time
periods, including days, months, quarters, and years, and then build and compare
calculations over those periods. The following time intelligence functions are available in
DAX.
In this Section
CLOSINGBALANCEMONTH Function (DAX)
CLOSINGBALANCEQUARTER Function (DAX)
CLOSINGBALANCEYEAR Function (DAX)
DATEADD Function (DAX)
DATESBETWEEN Function (DAX)
DATESINPERIOD Function (DAX)
DATESMTD Function (DAX)
DATESQTD Function (DAX)
DATESYTD Function (DAX)
ENDOFMONTH Function (DAX)
ENDOFQUARTER Function (DAX)
ENDOFYEAR Function (DAX)
FIRSTDATE Function (DAX)
FIRSTNONBLANK Function (DAX)
LASTDATE Function (DAX)

http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�

 32

LASTNONBLANK Function (DAX)
NEXTDAY Function (DAX)
NEXTMONTH Function (DAX)
NEXTQUARTER Function (DAX)
NEXTYEAR Function (DAX)
OPENINGBALANCEMONTH Function (DAX)
OPENINGBALANCEQUARTER Function (DAX)
OPENINGBALANCEYEAR Function (DAX)
PARALLELPERIOD Function (DAX)
PREVIOUSDAY Function (DAX)
PREVIOUSMONTH Function (DAX)
PREVIOUSQUARTER Function (DAX)
PREVIOUSYEAR Function (DAX)
SAMEPERIODLASTYEAR Function (DAX)
STARTOFMONTH Function (DAX)
STARTOFQUARTER Function (DAX)
STARTOFYEAR Function (DAX)
TOTALMTD Function (DAX)
TOTALQTD Function (DAX)
TOTALYTD Function (DAX)
See Also
Function Reference (DAX)
Date and Time Functions (DAX)
Filter and Value Functions (DAX)
Information Functions (DAX)
Logical Functions (DAX)
Math and Trigonometric Functions (DAX)
Statistical Functions (DAX)
Text Functions (DAX)

CLOSINGBALANCEMONTH Function
Evaluates the expression at the last date of the month in the current context.
Syntax

CLOSINGBALANCEMONTH(<expression>,<dates>[,<filter>])

 33

Parameters

Parameter Definition

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a
filter to apply to the current context.

Return Value
A scalar value that represents the expression evaluated at the last date of the month in
the current context.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

The filter expression has restrictions described in the topic, CALCULATE Function
(DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
The following sample formula creates a measure that calculates the 'Month End
Inventory Value' of the product inventory.
To see how this works, create a PivotTable and add the fields, CalendarYear,
MonthNumberOfYear and DayNumberOfMonth, to the Row Labels area of the
PivotTable. Then add a measure, named Month End Inventory Value, using the formula
defined in the code section, to the Values area of the PivotTable.

Note

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 34

Code
=CLOSINGBALANCEMONTH(SUMX(ProductInventory,ProductInventory[UnitCost]*P

roductInventory[UnitsBalance]),DateTime[DateKey])

See Also
Time intelligence functions
CLOSINGBALANCEYEAR
CLOSINGBALANCEQUARTER
Get Sample Data

CLOSINGBALANCEQUARTER Function
Evaluates the expression at the last date of the quarter in the current context.
Syntax

CLOSINGBALANCEQUARTER(<expression>,<dates>[,<filter>])
Parameters

Parameter Definition

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a
filter to apply to the current context.

Return Value
A scalar value that represents the expression evaluated at the last date of the quarter in
the current context.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Note

Note

http://go.microsoft.com/fwlink/?LinkId=164474�
http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�

 35

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

The filter expression has restrictions described in the topic, CALCULATE Function
(DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
The following sample formula creates a measure that calculates the 'Quarter End
Inventory Value' of the product inventory.
To see how this works, create a PivotTable and add the fields, CalendarYear,
CalendarQuarter and MonthNumberOfYear, to the Row Labels area of the PivotTable.
Then add a measure, named Quarter End Inventory Value, using the formula defined in
the code section, to the Values area of the PivotTable.
Code
=CLOSINGBALANCEQUARTER(SUMX(ProductInventory,ProductInventory[UnitCost]

*ProductInventory[UnitsBalance]),DateTime[DateKey])

See Also
Time intelligence functions
CLOSINGBALANCEYEAR
CLOSINGBALANCEMONTH
Get Sample Data

CLOSINGBALANCEYEAR Function
Evaluates the expression at the last date of the year in the current context.
Syntax

CLOSINGBALANCEYEAR(<expression>,<dates>[,<filter>][,<year_end_date>])
Parameters

Parameter Definition

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a
filter to apply to the current context.

Note

http://go.microsoft.com/fwlink/?LinkId=219172�
http://go.microsoft.com/fwlink/?LinkId=164474�

 36

year_end_date (optional) A literal string with a date that
defines the year-end date. The default is
December 31.

Return Value
A scalar value that represents the expression evaluated at the last date of the year in the
current context.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

The filter expression has the restrictions described in the topic, CALCULATE
Function (DAX).

The year_end_date parameter is a string literal of a date, in the same locale as the locale
of the client where the workbook was created. The year portion of the date is ignored.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
The following sample formula creates a measure that calculates the 'Year End Inventory
Value' of the product inventory.
To see how this works, create a PivotTable and add the field, CalendarYear, to the Row
Labels area of the PivotTable. Then add a measure, named Year End Inventory Value,
using the formula defined in the code section, to the Values area of the PivotTable.
Code
=CLOSINGBALANCEYEAR(SUMX(ProductInventory,ProductInventory[UnitCost]*Pr

oductInventory[UnitsBalance]),DateTime[DateKey])

See Also

Note

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 37

Time intelligence functions
CLOSINGBALANCEYEAR
CLOSINGBALANCEQUARTER
CLOSINGBALANCEMONTH
Get Sample Data

DATEADD Function
Returns a table that contains a column of dates, shifted either forward or backward in
time by the specified number of intervals from the dates in the current context.
Syntax

DATEADD(<dates>,<number_of_intervals>,<interval>)
Parameters

Term Definition

dates A column that contains dates.

number_of_intervals An integer that specifies the number of
intervals to add to or subtract from the
dates.

interval The interval by which to shift the dates. The
value for interval can be one of the
following: year, quarter, month, day

Return Value
A table containing a single column of date values.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column,
• A table expression that returns a single column of date/time values,
• A Boolean expression that defines a single-column table of date/time values.

Note

Note

http://go.microsoft.com/fwlink/?LinkId=164474�
http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�

 38

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

If the number specified for number_of_intervals is positive, the dates in dates are
moved forward in time; if the number is negative, the dates in dates are shifted back in
time.
The interval parameter is an enumeration, not a set of strings; therefore values should
not be enclosed in quotation marks. Also, the values: year, quarter, month, day should
be spelled in full when using them.
The result table includes only dates that exist in the dates column.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example: Shifting a Set of Dates
Description
The following formula calculates dates that are one year before the dates in the current
context.
Code
=DATEADD(DateTime[DateKey],-1,year)

See Also
Time intelligence functions
Date and time functions
Get Sample Data

DATESBETWEEN Function
Returns a table that contains a column of dates that begins with the start_date and
continues until the end_date.
Syntax

DATESBETWEEN(<dates>,<start_date>,<end_date>)
Parameters

Term Definition

dates A reference to a date/time column.

start_date A date expression.

end_date A date expression.

http://go.microsoft.com/fwlink/?LinkId=219172�
http://go.microsoft.com/fwlink/?LinkId=164474�

 39

Return Value
A table containing a single column of date values.
Remarks
If start_date is a blank date value, then start_date will be the earliest value in the dates
column.
If end_date is a blank date value, then end_date will be the latest value in the dates
column.
The dates used as the start_date and end_date are inclusive: that is, if the sales occurred
on September 1 and you use September 1 as the start date, sales on September 1 are
counted.

The DATESBETWEEN function is provided for working with custom date ranges. If
you are working with common date intervals such as months, quarters, and years,
we recommend that you use the appropriate function, such as DATESINPERIOD.

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that calculates the 'Summer 2007 sales'
for the Internet sales.
To see how this works, create a PivotTable and add the field, CalendarYear, to the Row
Labels area of the PivotTable. Then add a measure, named Summer 2007 Sales, using
the formula as defined in the code section, to the Values area of the PivotTable.
Code
=CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),

DATESBETWEEN(DateTime[DateKey],

 DATE(2007,6,1),

 DATE(2007,8,31)

))

See Also
Time intelligence functions
Date and time functions
DATESINPERIOD

Note

http://go.microsoft.com/fwlink/?LinkId=219172�

 40

DATESINPERIOD Function
Returns a table that contains a column of dates that begins with the start_date and
continues for the specified number_of_intervals.
Syntax

DATESINPERIOD(<dates>,<start_date>,<number_of_intervals>,<interval>)
Parameters

Term Definition

dates A column that contains dates.

start_date A date expression.

number_of_intervals An integer that specifies the number of
intervals to add to or subtract from the
dates.

interval The interval by which to shift the dates. The
value for interval can be one of the
following: year, quarter, month, day

Return Value
A table containing a single column of date values.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column,
• A table expression that returns a single column of date/time values,
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

If the number specified for number_of_intervals is positive, the dates are moved
forward in time; if the number is negative, the dates are shifted back in time.

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�

 41

The interval parameter is an enumeration, not a set of strings; therefore values should
not be enclosed in quotation marks. Also, the values: year, quarter, month, day should
be spelled in full when using them.
The result table includes only dates that appear in the values of the underlying table
column.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following formula returns the Internet sales for the 21 days prior to August 24, 2007.
Code
=

CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),DATESINPERIOD(DateTim

e[DateKey],DATE(2007,08,24),-21,day))

See Also
Time intelligence functions
Date and time functions
DATESBETWEEN
Get Sample Data

DATESMTD Function
Returns a table that contains a column of the dates for the month to date, in the current
context.
Syntax

DATESMTD(<dates>)
Parameters

Term Definition

dates A column that contains dates.

Property Value/Return Value
A table containing a single column of date values.
Remarks

http://go.microsoft.com/fwlink/?LinkId=219172�
http://go.microsoft.com/fwlink/?LinkId=164474�

 42

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that calculates the 'Month To Date
Total' for the Internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear,
MonthNumberOfYear and DayNumberOfMonth, to the Row Labels area of the
PivotTable. Then add a measure, named Month To Date Total, using the formula
defined in the code section, to the Values area of the PivotTable.
Code
=CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),

DATESMTD(DateTime[DateKey]))

See Also
Time intelligence functions
Date and time functions
DATESYTD
DATESQTD
Get Sample Data

DATESQTD Function
Returns a table that contains a column of the dates for the quarter to date, in the current
context.
Syntax

DATESQTD(<dates>)

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�
http://go.microsoft.com/fwlink/?LinkId=164474�

 43

Parameters

Term Definition

dates A column that contains dates.

Property Value/Return Value
A table containing a single column of date values.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that calculates the 'Quarterly Running
Total' of the internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear,
CalendarQuarter and MonthNumberOfYear to the Row Labels area of the PivotTable.
Then add a measure, named Quarterly Running Total, using the formula defined in the
code section, to the Values area of the PivotTable.
Code
=CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),

DATESQTD(DateTime[DateKey]))

See Also
Time intelligence functions
Date and time functions
DATESYTD

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 44

DATESMTD
Get Sample Data

DATESYTD Function
Returns a table that contains a column of the dates for the year to date, in the current
context.
Syntax

DATESYTD(<dates> [,<year_end_date>])
Parameters

Term Definition

dates A column that contains dates.

year_end_date (optional) A literal string with a date that
defines the year-end date. The default is
December 31.

Property Value/Return Value
A table containing a single column of date values.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column,
• A table expression that returns a single column of date/time values,
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

The year_end_date parameter is a string literal of a date, in the same locale as the locale
of the client where the workbook was created. The year portion of the date is ignored.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.

Note

Note

http://go.microsoft.com/fwlink/?LinkId=164474�
http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 45

Example
Description
The following sample formula creates a measure that calculates the 'Running Total' for
the Internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear and
CalendarQuarter, to the Row Labels area of the PivotTable. Then add a measure named
Running Total, using the formula defined in the code section, to the Values area of the
PivotTable.
Code
=CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),

DATESYTD(DateTime[DateKey]))

See Also
Time intelligence functions
Date and time functions
DATESMTD
DATESQTD
Get Sample Data

ENDOFMONTH Function
Returns the last date of the month in the current context for the specified column of
dates.
Syntax

ENDOFMONTH(<dates>)
Parameters

Term Definition

dates A column that contains dates.

Return Value
A table containing a single column and single row with a date value.
Remarks

To understand more about how context affects the results of formulas,
see Context.

Note

http://go.microsoft.com/fwlink/?LinkId=164474�
http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�

 46

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that returns the end of the month, for
the current context.
To see how this works, create a PivotTable and add the fields CalendarYear and
MonthNumberOfYear to the Row Labels area of the PivotTable. Then add a measure,
named EndOfMonth, using the formula defined in the code section, to the Values area
of the PivotTable.
Code
=ENDOFMONTH(DateTime[DateKey])

See Also
Date and time functions
time intelligence functions
endofyear
endofquarter

ENDOFQUARTER Function
Returns the last date of the quarter in the current context for the specified column of
dates.
Syntax

ENDOFQUARTER(<dates>)
Parameters

Term Definition

dates A column that contains dates.

Note

http://go.microsoft.com/fwlink/?LinkId=219172�

 47

Return Value
A table containing a single column and single row with a date value.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column,
• A table expression that returns a single column of date/time values,
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that returns the end of the quarter, for
the current context.
To see how this works, create a PivotTable and add the fields CalendarYear and
MonthNumberOfYear to the Row Labels area of the PivotTable. Then add a measure,
named EndOfQuarter, using the formula defined in the code section, to the Values area
of the PivotTable.
Code
=ENDOFQUARTER(DateTime[DateKey])

See Also
Date and time functions
time intelligence functions
endofyear
endofmonth

ENDOFYEAR Function
Returns the last date of the year in the current context for the specified column of dates.
Syntax

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 48

ENDOFYEAR(<dates> [,<year_end_date>])
Parameters

Term Definition

dates A column that contains dates.

year_end_date (optional) A literal string with a date that
defines the year-end date. The default is
December 31.

Return Value
A table containing a single column and single row with a date value.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column,
• A table expression that returns a single column of date/time values,
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

The year_end_date parameter is a string literal of a date, in the same locale as the locale
of the client where the workbook was created. The year portion of the date is ignored.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that returns the end of the fiscal year
that ends on June 30, for the current context.
To see how this works, create a PivotTable and add the field CalendarYear to the Row
Labels area of the PivotTable. Then add a measure, named EndOfFiscalYear, using the
formula defined in the code section, to the Values area of the PivotTable.
Code

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 49

=ENDOFYEAR(DateTime[DateKey],"06/30/2004")

See Also
Date and time functions
time intelligence functions
endofmonth
endofquarter

FIRSTDATE Function
Returns the first date in the current context for the specified column of dates.
Syntax

FIRSTDATE(<dates>)
Parameters

Term Definition

dates A column that contains dates.

Return Value
A table containing a single column and single row with a date value.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values,.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

When the current context is a single date, the date returned by the FIRSTDATE and
LASTDATE functions will be equal.
Technically, the return value is a table that contains a single column and single value.
Therefore, this function can be used as an argument to any function that requires a table
in its arguments. Also, the returned value can be used whenever a date value is required.

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�

 50

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that obtains the first date when a sale
was made in the Internet sales channel for the current context.
To see how this works, create a PivotTable and add the field CalendarYear to the Row
Labels area of the PivotTable. Then add a measure, named FirstSaleDate, using the
formula defined in the code section, to the Values area of the PivotTable.
Code
=FIRSTDATE('InternetSales_USD'[SaleDateKey])

See Also
Date and time functions
Time Intelligence functions
LASTDATE
FIRSTNONBLANKDATE
Get Sample Data

FIRSTNONBLANK Function
Returns the first value in the column, column, filtered by the current context, where the
expression is not blank.
Syntax

FIRSTNONBLANK(<column>,<expression>)
Parameters

Term Definition

column A column expression.

expression An expression evaluated for blanks for each
value of column.

Property Value/Return Value
A table containing a single column and single row with the computed first value.
Remarks
The column argument can be any of the following:

http://go.microsoft.com/fwlink/?LinkId=219172�
http://go.microsoft.com/fwlink/?LinkId=164474�

 51

• A reference to any column.
• A table with a single column.
• A Boolean expression that defines a single-column table .

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This function is typically used to return the first value of a column for which the
expression is not blank. For example, you could get the last value for which there were
sales of a product.

To understand more about how context affects the results of formulas,
see Context.

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
See Also
LASTNONBLANK Function (DAX)
Statistical Functions (DAX)
Function Reference (DAX)
Context in DAX Formulas
Working with Relationships in Formulas
Get Sample Data

LASTDATE Function
Returns the last date in the current context for the specified column of dates.
Syntax

LASTDATE(<dates>)
Parameters

Term Definition

dates A column that contains dates.

Return Value
A table containing a single column and single row with a date value.

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�
http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://msdn.microsoft.com/en-us/library/9b1d8741-8e1c-4bdf-bdaf-40b509d2db6d(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=164474�

 52

Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column,
• A table expression that returns a single column of date/time values,
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

When the current context is a single date, the date returned by the FIRSTDATE and
LASTDATE functions will be equal.
Technically, the return value is a table that contains a single column and single value.
Therefore, this function can be used as an argument to any function that requires a table
in its arguments. Also, the returned value can be used whenever a date value is required.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that obtains the last date, for the
current context, when a sale was made in the Internet sales channel.
To see how this works, create a PivotTable and add the field CalendarYear to the Row
Labels area of the PivotTable. Then add a measure, named LastSaleDate, using the
formula defined in the code section, to the Values area of the PivotTable.
Code
=LASTDATE('InternetSales_USD'[SaleDateKey])

See Also
Date and time functions
Time Intelligence functions
FIRSTDATE
LASTNONBLANKDATE
Get Sample Data

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�
http://go.microsoft.com/fwlink/?LinkId=164474�

 53

LASTNONBLANK Function
Returns the last value in the column, column, filtered by the current context, where the
expression is not blank.
Syntax

LASTNONBLANK(<column>,<expression>)
Parameters

Term Definition

column A column expression.

expression An expression evaluated for blanks for each
value of column.

Property Value/Return Value
A table containing a single column and single row with the computed last value.
Remarks
The column argument can be any of the following:
• A reference to any column.
• A table with a single column.
• A Boolean expression that defines a single-column table

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This function is typically used to return the last value of a column for which the
expression is not blank. For example, you could get the last value for which there were
sales of a product.

To understand more about how context affects the results of formulas,
see Context.

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
See Also
FIRSTNONBLANK Function (DAX)
Statistical Functions (DAX)

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 54

Function Reference (DAX)
Context in DAX Formulas
Working with Relationships in Formulas
Get Sample Data

NEXTDAY Function
Returns a table that contains a column of all dates from the next day, based on the first
date specified in the dates column in the current context.
Syntax

NEXTDAY(<dates>)
Parameters

Term Definition

dates A column containing dates.

Return Value
A table containing a single column of date values.
Remarks

To understand more about how context affects the results of formulas,
see Context.

This function returns all dates from the next day to the first date in the input parameter.
For example, if the first date in the dates argument refers to June 10, 2009; then this
function returns all dates equal to June 11, 2009.
The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://msdn.microsoft.com/en-us/library/9b1d8741-8e1c-4bdf-bdaf-40b509d2db6d(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=164474�
http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 55

Example
Description
The following sample formula creates a measure that calculates the 'next day sales' of
the internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear and
MonthNumberOfYear, to the Row Labels area of the PivotTable. Then add a measure,
named Next Day Sales, using the formula defined in the code section, to the Values
area of the PivotTable.
Code
=CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),

NEXTDAY('DateTime'[DateKey]))

See Also
Time intelligence functions
Date and time functions
NEXTQUARTER
NEXTMONTH
NEXTYEAR
Examples

NEXTMONTH Function
Returns a table that contains a column of all dates from the next month, based on the
first date in the dates column in the current context.
Syntax

NEXTMONTH(<dates>)
Parameters

Term Definition

dates A column containing dates.

Return Value
A table containing a single column of date values.
Remarks

Note

http://msdn.microsoft.com/en-us/library/eb0eba2e-646e-4e17-b9f4-d1958ccfb447(SQL.110)�

 56

To understand more about how context affects the results of formulas,
see Context.

This function returns all dates from the next day to the first date in the input parameter.
For example, if the first date in the dates argument refers to June 10, 2009; then this
function returns all dates for the month of July, 2009.
The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that calculates the 'next month sales'
for the Internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear and
MonthNumberOfYear, to the Row Labels area of the PivotTable. Then add a measure,
named Next Month Sales, using the formula defined in the code section, to the Values
area of the PivotTable.
Code
=CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),

NEXTMONTH('DateTime'[DateKey]))

See Also
Time intelligence functions
Date and time functions
NEXTDAY
NEXTQUARTER
NEXTYEAR
Get Sample Data

NEXTQUARTER Function
Returns a table that contains a column of all dates in the next quarter, based on the first
date specified in the dates column, in the current context.

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�
http://go.microsoft.com/fwlink/?LinkId=164474�

 57

Syntax

NEXTQUARTER(<dates>)
Parameters

Term Definition

dates A column containing dates.

Return Value
A table containing a single column of date values.
Remarks

To understand more about how context affects the results of formulas,
see Context.

This function returns all dates in the next quarter, based on the first date in the input
parameter. For example, if the first date in the dates column refers to June 10, 2009, this
function returns all dates for the quarter July to September, 2009.
The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that calculates the 'next quarter sales'
for the Internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear and
CalendarQuarter, to the Row Labels area of the PivotTable. Then add a measure, named
Next Quarter Sales, using the formula defined in the code section to the Values area of
the PivotTable.
Code

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 58

=CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),

NEXTQUARTER('DateTime'[DateKey]))

See Also
Time intelligence functions
Date and time functions
NEXTDAY
NEXTMONTH
NEXTYEAR
Get Sample Data

NEXTYEAR Function
Returns a table that contains a column of all dates in the next year, based on the first
date in the dates column, in the current context.
Syntax

NEXTYEAR(<dates>[,<year_end_date>])
Parameters

Term Definition

dates A column containing dates.

year_end_date (optional) A literal string with a date that
defines the year-end date. The default is
December 31.

Return Value
A table containing a single column of date values.
Remarks

To understand more about how context affects the results of formulas,
see Context.

This function returns all dates in the next year, based on the first date in the input
column. For example, if the first date in the dates column refers to the year 2007, this
function returns all dates for the year 2008.
The dates argument can be any of the following:
• A reference to a date/time column.

Note

http://go.microsoft.com/fwlink/?LinkId=164474�
http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�

 59

• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

The year_end_date parameter is a string literal of a date, in the same locale as the locale
of the client where the workbook was created. The year portion of the date is ignored.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that calculates the 'next year sales' for
the Internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear and
CalendarQuarter, to the Row Labels area of the PivotTable. Then add a measure, named
Next Year Sales, using the formula defined in the code section, to the Values area of
the PivotTable.
Code
=CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),

NEXTYEAR('DateTime'[DateKey]))

See Also
Time intelligence functions
Date and time functions
NEXTDAY
NEXTQUARTER
NEXTMONTH
Get Sample Data

OPENINGBALANCEMONTH Function
Evaluates the expression at the first date of the month in the current context.
Syntax

OPENINGBALANCEMONTH(<expression>,<dates>[,<filter>])
Parameters

Note

http://go.microsoft.com/fwlink/?LinkId=219172�
http://go.microsoft.com/fwlink/?LinkId=164474�

 60

Parameter Definition

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a
filter to apply to the current context.

Return Value
A scalar value that represents the expression evaluated at the first date of the month in
the current context.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

• The filter expression has restrictions described in the topic, CALCULATE Function
(DAX).

• This DAX function is not supported for use in DirectQuery mode. For more
information about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.

Example
The following sample formula creates a measure that calculates the 'Month Start
Inventory Value' of the product inventory.
To see how this works, create a PivotTable and add the fields, CalendarYear,
MonthNumberOfYear and DayNumberOfMonth, to the Row Labels area of the
PivotTable. Then add a measure, named Month Start Inventory Value, using the
formula defined in the code section, to the Values area of the PivotTable.
Code

Note

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 61

=OPENINGBALANCEMONTH(SUMX(ProductInventory,ProductInventory[UnitCost]*P

roductInventory[UnitsBalance]),DateTime[DateKey])

See Also
OPENINGBALANCEYEAR
OPENINGBALANCEQUARTER
Time Intelligence Functions
closingbalancemonth
Get Sample Data

OPENINGBALANCEQUARTER Function
Evaluates the expression at the first date of the quarter, in the current context.
Syntax

OPENINGBALANCEQUARTER(<expression>,<dates>[,<filter>])
Parameters

Parameter Definition

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a
filter to apply to the current context.

Return Value
A scalar value that represents the expression evaluated at the first date of the quarter in
the current context.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values,
• A Boolean expression that defines a single-column table of date/time values.

Note

Note

http://go.microsoft.com/fwlink/?LinkId=164474�
http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�

 62

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

• The filter expression has restrictions described in the topic, CALCULATE Function
(DAX).

• This DAX function is not supported for use in DirectQuery mode. For more
information about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.

Example
The following sample formula creates a measure that calculates the 'Quarter Start
Inventory Value' of the product inventory.
To see how this works, create a PivotTable and add the fields, CalendarYear,
CalendarQuarter and MonthNumberOfYear, to the Row Labels area of the PivotTable.
Then add a measure, named Quarter Start Inventory Value, using the formula defined
in the code section, to the Values area of the PivotTable.
Code
=OPENINGBALANCEQUARTER(SUMX(ProductInventory,ProductInventory[UnitCost]

*ProductInventory[UnitsBalance]),DateTime[DateKey])

See Also
OPENINGBALANCEYEAR
OPENINGBALANCEMONTH
Time Intelligence Functions
closingbalancequarter
Get Sample Data

OPENINGBALANCEYEAR Function
Evaluates the expression at the first date of the year in the current context.
Syntax

OPENINGBALANCEYEAR(<expression>,<dates>[,<filter>][,<year_end_date>])
Parameters

Parameter Definition

expression An expression that returns a scalar value.

dates A column that contains dates.

Note

http://go.microsoft.com/fwlink/?LinkId=219172�
http://go.microsoft.com/fwlink/?LinkId=164474�

 63

filter (optional) An expression that specifies a
filter to apply to the current context.

year_end_date (optional) A literal string with a date that
defines the year-end date. The default is
December 31.

Return Value
A scalar value that represents the expression evaluated at the first date of the year in the
current context.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

The filter expression has restrictions described in the topic, CALCULATE Function
(DAX).

The year_end_date parameter is a string literal of a date, in the same locale as the locale
of the client where the workbook was created. The year portion of the date is ignored.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
The following sample formula creates a measure that calculates the 'Year Start Inventory
Value' of the product inventory.
To see how this works, create a PivotTable and add the field, CalendarYear, to the Row
Labels area of the PivotTable. Then add a measure, named Year Start Inventory Value,
using the formula defined in the code section, to the Values area of the PivotTable.
Code

Note

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 64

=OPENINGBALANCEYEAR(SUMX(ProductInventory,ProductInventory[UnitCost]*Pr

oductInventory[UnitsBalance]),DateTime[DateKey])

See Also
OPENINGBALANCEQUARTER
OPENINGBALANCEMONTH
Time Intelligence Functions
Closingbalanceyear
Get Sample Data

PARALLELPERIOD Function
Returns a table that contains a column of dates that represents a period parallel to the
dates in the specified dates column, in the current context, with the dates shifted a
number of intervals either forward in time or back in time.
Syntax

PARALLELPERIOD(<dates>,<number_of_intervals>,<interval>)
Parameters

Term Definition

dates A column that contains dates.

number_of_intervals An integer that specifies the number of
intervals to add to or subtract from the
dates.

interval The interval by which to shift the dates. The
value for interval can be one of the
following: year, quarter, month.

Return Value
A table containing a single column of date values.
Remarks
This function takes the current set of dates in the column specified by dates, shifts the
first date and the last date the specified number of intervals, and then returns all
contiguous dates between the two shifted dates. If the interval is a partial range of
month, quarter, or year then any partial months in the result are also filled out to
complete the entire interval.

Note

http://go.microsoft.com/fwlink/?LinkId=164474�

 65

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column,
• A table expression that returns a single column of date/time values,
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

If the number specified for number_of_intervals is positive, the dates in dates are
moved forward in time; if the number is negative, the dates in dates are shifted back in
time.
The interval parameter is an enumeration, not a set of strings; therefore values should
not be enclosed in quotation marks. Also, the values: year, quarter, month should be
spelled in full when using them.
The result table includes only dates that appear in the values of the underlying table
column.
The PARALLELPERIOD function is similar to the DATEADD function except that
PARALLELPERIOD always returns full periods at the given granularity level instead of the
partial periods that DATEADD returns. For example, if you have a selection of dates that
starts at June 10 and finishes at June 21 of the same year, and you want to shift that
selection forward by one month then the PARALLELPERIOD function will return all dates
from the next month (July 1 to July 31); however, if DATEADD is used instead, then the
result will include only dates from July 10 to July 21.
If the dates in the current context do not form a contiguous interval, the function returns
an error.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that calculates the previous year sales
for Internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear and
CalendarQuarter, to the Row Labels area of the PivotTable. Then add a measure, named
Previous Year Sales, using the formula defined in the code section, to the Values area
of the PivotTable.

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 66

The above example uses the table DateTime from the DAX sample workbook. For
more information about samples, see Get Sample Data .

Code
=CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),

PARALLELPERIOD(DateTime[DateKey],-1,year))

See Also
Time intelligence functions
Date and time functions
DATEADD
Get Sample Data

PREVIOUSDAY Function
Returns a table that contains a column of all dates representing the day that is previous
to the first date in the dates column, in the current context.
Syntax

PREVIOUSDAY(<dates>)
Parameters

Term Definition

dates A column containing dates.

Return Value
A table containing a single column of date values.
Remarks

To understand more about how context affects the results of formulas,
see Context.

This function determines the first date in the input parameter, and then returns all dates
corresponding to the day previous to that first date. For example, if the first date in the
dates argument refers to June 10, 2009; this function returns all dates equal to June 9,
2009.
The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.

Note

http://go.microsoft.com/fwlink/?LinkId=164474�
http://go.microsoft.com/fwlink/?LinkId=164474�
http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�

 67

• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that calculates the 'previous day sales'
for the Internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear and
MonthNumberOfYear, to the Row Labels area of the PivotTable. Then add a measure,
named Previous Day Sales, using the formula defined in the code section, to the Values
area of the PivotTable.
Code
=CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),

PREVIOUSDAY('DateTime'[DateKey]))

See Also
Time intelligence functions
Date and time functions
PREVIOUSMONTH
PREVIOUSQUARTER
PREVIOUSYEAR

PREVIOUSMONTH Function
Returns a table that contains a column of all dates from the previous month, based on
the first date in the dates column, in the current context.
Syntax

PREVIOUSMONTH(<dates>)
Parameters

Term Definition

Dates A column containing dates.

Note

http://go.microsoft.com/fwlink/?LinkId=219172�

 68

Return Value
A table containing a single column of date values.
Remarks

To understand more about how context affects the results of formulas,
see Context.

This function returns all dates from the previous month, using the first date in the
column used as input. For example, if the first date in the dates argument refers to June
10, 2009, this function returns all dates for the month of May, 2009.
The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that calculates the 'previous month
sales' for the Internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear and
MonthNumberOfYear, to the Row Labels area of the PivotTable. Then add a measure,
named Previous Month Sales, using the formula defined in the code section, to the
Values area of the PivotTable.
Code
=CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),

PREVIOUSMONTH('DateTime'[DateKey]))

See Also
Time intelligence functions
Date and time functions
PREVIOUSDAY
PREVIOUSQUARTER
PREVIOUSYEAR
Get Sample Data

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�
http://go.microsoft.com/fwlink/?LinkId=164474�

 69

PREVIOUSQUARTER Function
Returns a table that contains a column of all dates from the previous quarter, based on
the first date in the dates column, in the current context.
Syntax

PREVIOUSQUARTER(<dates>)
Parameters

Term Definition

dates A column containing dates.

Return Value
A table containing a single column of date values.
Remarks

To understand more about how context affects the results of formulas,
see Context.

This function returns all dates from the previous quarter, using the first date in the input
column. For example, if the first date in the dates argument refers to June 10, 2009, this
function returns all dates for the quarter January to March, 2009.
The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that calculates the 'previous quarter
sales' for Internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear and
CalendarQuarter, to the Row Labels area of the PivotTable. Then add a measure, named

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 70

Previous Quarter Sales, using the formula defined in the code section, to the Values
area of the PivotTable.
Code
=CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),

PREVIOUSQUARTER('DateTime'[DateKey]))

See Also
Time intelligence functions
Date and time functions
PREVIOUSMONTH
PREVIOUSDAY
PREVIOUSYEAR
Get Sample Data

PREVIOUSYEAR Function
Returns a table that contains a column of all dates from the previous year, given the last
date in the dates column, in the current context.
Syntax

PREVIOUSYEAR(<dates>[,<year_end_date>])
Parameters

Term Definition

dates A column containing dates.

year_end_date (optional) A literal string with a date that
defines the year-end date. The default is
December 31.

Return Value
A table containing a single column of date values.
Remarks

To understand more about how context affects the results of formulas,
see Context.

This function returns all dates from the previous year given the latest date in the input
parameter. For example, if the latest date in the dates argument refers to the year 2009,

Note

http://go.microsoft.com/fwlink/?LinkId=164474�
http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�

 71

then this function returns all dates for the year of 2008, up to the specified
year_end_date.
The dates argument can be any of the following:
• A reference to a date/time column,
• A table expression that returns a single column of date/time values,
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

The year_end_date parameter is a string literal of a date, in the same locale as the locale
of the client where the workbook was created. The year portion of the date is ignored.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that calculates the previous year sales
for the Internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear and
CalendarQuarter, to the Row Labels area of the PivotTable. Then add a measure, named
Previous Year Sales, using the formula defined in the code section, to the Values area
of the PivotTable.
Code
=CALCULATE(SUM(InternetSales_USD[SalesAmount_USD]),

PREVIOUSYEAR('DateTime'[DateKey]))

See Also
Time intelligence functions
Date and time functions
PREVIOUSMONTH
PREVIOUSDAY
PREVIOUSQUARTER

SAMEPERIODLASTYEAR Function
Returns a table that contains a column of dates shifted one year back in time from the
dates in the specified dates column, in the current context.
Syntax

Note

http://go.microsoft.com/fwlink/?LinkId=219172�

 72

SAMEPERIODLASTYEAR(<dates>)
Parameters

Term Definition

dates A column containing dates.

Property Value/Return Value
A single-column table of date values.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column,
• A table expression that returns a single column of date/time values,
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

The dates returned are the same as the dates returned by this equivalent formula:
DATEADD(dates, -1, year)
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that calculates the previous year sales
of the Reseller sales.
To see how this works, create a PivotTable and add the fields, CalendarYear to the Row
Labels area of the PivotTable. Then add a measure, named Previous Year Sales, using
the formula defined in the code section, to the Values area of the PivotTable.
Code
=CALCULATE(SUM(ResellerSales_USD[SalesAmount_USD]),

SAMEPERIODLASTYEAR(DateTime[DateKey]))

See Also

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 73

Time intelligence functions
Date and time functions
PREVIOUSYEAR
PARALLELPERIOD

STARTOFMONTH Function
Returns the first date of the month in the current context for the specified column of
dates.
Syntax

STARTOFMONTH(<dates>)
Parameters

Term Definition

dates A column that contains dates.

Return Value
A table containing a single column and single row with a date value.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 74

The following sample formula creates a measure that returns the start of the month, for
the current context.
To see how this works, create a PivotTable and add the fields CalendarYear and
MonthNumberOfYear to the Row Labels area of the PivotTable. Then add a measure,
named StartOfMonth, using the formula defined in the code section, to the Values area
of the PivotTable.
Code
=STARTOFMONTH(DateTime[DateKey])

See Also
Date and time functions
time intelligence functions
STARTOFYEAR
STARTOFQUARTER

STARTOFQUARTER Function
Returns the first date of the quarter in the current context for the specified column of
dates.
Syntax

STARTOFQUARTER(<dates>)
Parameters

Term Definition

dates A column that contains dates.

Return Value
A table containing a single column and single row with a date value.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�

 75

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that returns the start of the quarter, for
the current context.
To see how this works, create a PivotTable and add the fields CalendarYear and
MonthNumberOfYear to the Row Labels area of the PivotTable. Then add a measure,
named StartOfQuarter, using the formula defined in the code section, to the Values
area of the PivotTable.
Code
=STARTOFQUARTER(DateTime[DateKey])

See Also
Date and time functions
time intelligence functions
STARTOFYEAR
STARTOFMONTH

STARTOFYEAR Function
Returns the first date of the quarter in the current context for the specified column of
dates.
Syntax

STARTOFQUARTER(<dates>)
Parameters

Term Definition

dates A column that contains dates.

Return Value
A table containing a single column and single row with a date value.
Remarks

Note

http://go.microsoft.com/fwlink/?LinkId=219172�

 76

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following sample formula creates a measure that returns the start of the quarter, for
the current context.
To see how this works, create a PivotTable and add the fields CalendarYear and
MonthNumberOfYear to the Row Labels area of the PivotTable. Then add a measure,
named StartOfQuarter, using the formula defined in the code section, to the Values
area of the PivotTable.
Code
=STARTOFQUARTER(DateTime[DateKey])

See Also
Date and time functions
time intelligence functions
STARTOFYEAR
STARTOFMONTH

TOTALMTD Function
Evaluates the value of the expression for the month to date, in the current context.
Syntax

TOTALMTD(<expression>,<dates>[,<filter>])
Parameters

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 77

Parameter Definition

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a
filter to apply to the current context.

Return Value
A scalar value that represents the expression evaluated for the dates in the current
month-to-date, given the dates in dates.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

The filter expression has restrictions described in the topic, CALCULATE Function
(DAX).

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
The following sample formula creates a measure that calculates the 'month running total'
or 'month running sum' for the Internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear,
MonthNumberOfYear and DayNumberOfMonth, to the Row Labels area of the
PivotTable. Then add a measure, named Month-to-date Total, using the formula
defined in the code section, to the Values area of the PivotTable.
Code
=TOTALMTD(SUM(InternetSales_USD[SalesAmount_USD]),DateTime[DateKey])

Note

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 78

See Also
ALL
CALCULATE
TOTALYTD
TOTALQTD
Get Sample Data

TOTALQTD Function
Evaluates the value of the expression for the dates in the quarter to date, in the current
context.
Syntax

TOTALQTD(<expression>,<dates>[,<filter>])
Parameters

Parameter Definition

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a
filter to apply to the current context.

Return Value
A scalar value that represents the expression evaluated for all dates in the current
quarter to date, given the dates in dates.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column.
• A table expression that returns a single column of date/time values.
• A Boolean expression that defines a single-column table of date/time values.

Note

Note

http://go.microsoft.com/fwlink/?LinkId=164474�
http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�

 79

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

• The filter expression has restrictions described in the topic, CALCULATE Function
(DAX).

• This DAX function is not supported for use in DirectQuery mode. For more
information about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.

Example
The following sample formula creates a measure that calculates the 'quarter running
total' or 'quarter running sum' for the Internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear,
CalendarQuarter and MonthNumberOfYear, to the Row Labels area of the PivotTable.
Then add a measure, named Quarter-to-date Total, using the formula defined in the
code section, to the Values area of the PivotTable.
Code
=TOTALQTD(SUM(InternetSales_USD[SalesAmount_USD]),DateTime[DateKey])

See Also
ALL
CALCULATE
TOTALYTD
TOTALMTD
Get Sample Data

TOTALYTD Function
Evaluates the year-to-date value of the expression in the current context.
Syntax

TOTALYTD(<expression>,<dates>[,<filter>][,<year_end_date>])
Parameters

Parameter Definition

expression An expression that returns a scalar value.

dates A column that contains dates.

filter (optional) An expression that specifies a

Note

http://go.microsoft.com/fwlink/?LinkId=219172�
http://go.microsoft.com/fwlink/?LinkId=164474�

 80

Parameter Definition

filter to apply to the current context.

year_end_date (optional) A literal string with a date that
defines the year-end date. The default is
December 31.

Return Value
A scalar value that represents the expression evaluated for the current year-to-date
dates.
Remarks

To understand more about how context affects the results of formulas,
see Context.

The dates argument can be any of the following:
• A reference to a date/time column,
• A table expression that returns a single column of date/time values,
• A Boolean expression that defines a single-column table of date/time values.

Constraints on Boolean expressions are described in the topic, CALCULATE
Function (DAX).

The filter expression has restrictions described in the topic, CALCULATE Function
(DAX).

The year_end_date parameter is a string literal of a date, in the same locale as the locale
of the client where the workbook was created. The year portion of the date is ignored.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
The following sample formula creates a measure that calculates the 'year running total'
or 'year running sum' for the Internet sales.
To see how this works, create a PivotTable and add the fields, CalendarYear,
CalendarQuarter, and MonthNumberOfYear, to the Row Labels area of the PivotTable.
Then add a measure, named Year-to-date Total, using the formula defined in the code
section, to the Values area of the PivotTable.
Code

Note

Note

Note

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 81

=TOTALYTD(SUM(InternetSales_USD[SalesAmount_USD]),DateTime[DateKey])

See Also
ALL
CALCULATE
DATESYTD Function (DAX)
TOTALMTD
TOTALQTD
Get Sample Data

DATE Function
Returns the specified date in datetime format.
Syntax

DATE(<year>, <month>, <day>)
Parameters

Term Definition

year A number representing the year.
The value of the year argument can include
one to four digits. The year argument is
interpreted according to the date system
used by your computer.
Dates beginning with March 1, 1900 are
supported.
If you enter a number that has decimal
places, the number is rounded.
For values greater than 9999 or less than
zero (negative values), the function returns
a #VALUE! error.
If the year value is between 0 and 1899, the
value is added to 1900 to produce the final
value. See the examples below.

Note
You should use four digits for the
year argument whenever possible
to prevent unwanted results. For

http://go.microsoft.com/fwlink/?LinkId=164474�

 82

Term Definition

example, using 07 returns 1907 as
the year value.

month A number representing the month or a
calculation according to the following rules:
If month is a number from 1 to 12, then it
represents a month of the year. 1
represents January, 2 represents February,
and so on until 12 that represents
December.
If you enter an integer larger than 12, the
following computation occurs: the date is
calculated by adding the value of month to
the year. For example, if you have DATE(
2008, 18, 1), the function returns a datetime
value equivalent to June 1st of 2009,
because 18 months are added to the
beginning of 2008 yielding a value of June
2009. See examples below.
If you enter a negative integer, the
following computation occurs: the date is
calculated subtracting the value of month
from year. For example, if you have DATE(
2008, -6, 15), the function returns a
datetime value equivalent to June 15th of
2007, because when 6 months are
subtracted from the beginning of 2008 it
yields a value of June 2007. See examples
below.

day A number representing the day or a
calculation according to the following rules:
If day is a number from 1 to the last day of
the given month then it represents a day of
the month.
If you enter an integer larger than last day
of the given month, the following
computation occurs: the date is calculated
by adding the value of day to month. For
example, in the formula DATE(2008, 3,
32), the DATE function returns a datetime

 83

Term Definition

value equivalent to April 1st of 2008,
because 32 days are added to the
beginning of March yielding a value of
April 1st.
If you enter a negative integer, the
following computation occurs: the date is
calculated subtracting the value of day
from month. For example, in the formula
DATE(2008, 5, -15), the DATE function
returns a datetime value equivalent to
April 15th of 2008, because 15 days are
subtracted from the beginning of May
2008 yielding a value of April 2008.
If day contains a decimal portion, it is
rounded to the nearest integer value.

Return Value
Returns the specified date (datetime).
Remarks
The DATE function takes the integers that are input as arguments, and generates the
corresponding date. The DATE function is most useful in situations where the year,
month, and day are supplied by formulas. For example, the underlying data might
contain dates in a format that is not recognized as a date, such as YYYYMMDD. You can
use the DATE function in conjunction with other functions to convert the dates to a
number that can be recognized as a date.
In contrast to Microsoft Excel, which stores dates as a serial number, DAX date functions
always return a datetime data type. However, you can use formatting to display dates as
serial numbers if you want.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example: Returning a Simple Date
Description
The following formula returns the date July 8, 2009:
Code
=DATE(2009,7,8)

Example: Years before 1899

http://go.microsoft.com/fwlink/?LinkId=219171�

 84

Description
If the value that you enter for the year argument is between 0 (zero) and 1899
(inclusive), that value is added to 1900 to calculate the year. The following formula
returns January 2, 1908: (1900+08).
Code
=DATE(08,1,2)

Example: Years before 1899
Description
If the value that you enter for the year argument is between 0 (zero) and 1899
(inclusive), that value is added to 1900 to calculate the year. The following formula
returns January 2, 3700: (1900+1800).
Code
=DATE(1800,1,2)

Example: Years after 1899
Description
If year is between 1900 and 9999 (inclusive), that value is used as the year. The following
formula returns January 2, 2008:
Code
=DATE(2008,1,2)

Example: Working with Months
Description
If month is greater than 12, month adds that number of months to the first month in
the year specified. The following formula returns the date February 2, 2009:
Code
=DATE(2008,14,2)

Comment
If the month value is less than 1, the DATE function subtracts the magnitude of that
number of months, plus 1, from the first month in the year specified. The following
formula returns September 2, 2007:

=DATE(2008,-3,2)

Example: Working with Days
Description
If day is greater than the number of days in the month specified, day adds that number
of days to the first day in the month. The following formula returns the date February 4,
2008:
Code
=DATE(2008,1,35)

 85

Comment
If day is less than 1, day subtracts the magnitude that number of days, plus one, from
the first day of the month specified. The following formula returns December 16, 2007:

=DATE(2008,1,-15)

See Also
Date and Time functions
DAY
TODAY

DATEVALUE Function
Converts a date in the form of text to a date in datetime format.
Syntax

DATEVALUE(date_text)
Parameters

Term Definition

date_text Text that represents a date.

Property Value/Return Value
A date in datetime format.
Remarks
The DATEVALUE function uses the locale and date/time settings of the client computer
to understand the text value when performing the conversion. If the current date/time
settings represent dates in the format of Month/Day/Year, then the string, "1/8/2009",
would be converted to a datetime value equivalent to January 8th of 2009. However, if
the current date and time settings represent dates in the format of Day/Month/Year, the
same string would be converted as a datetime value equivalent to August 1st of 2009.
If the year portion of the date_text argument is omitted, the DATEVALUE function uses
the current year from your computer's built-in clock. Time information in the date_text
argument is ignored.
Example
Description
The following example returns a different datetime value depending on your computer's
locale and settings for how dates and times are presented.

 86

• In date/time settings where the day precedes the month, the example returns a
datetime value corresponding to January 8th of 2009.

• In date/time settings where the month precedes the day, the example returns a
datetime value corresponding to August 1st of 2009.

Code
=DATEVALUE("8/1/2009")

See Also
Date and Time functions

DAY Function
 Returns the day of the month, a number from 1 to 31.
Syntax

DAY(<date>)
Parameters

Term Definition

date A date in datetime format, or a text
representation of a date.

Return Value
An integer number indicating the day of the month.
Remarks
The DAY function takes as an argument the date of the day you are trying to find. Dates
can be provided to the function by using another date function, by using an expression
that returns a date, or by typing a date in a datetime format. You can also type a date in
one of the accepted string formats for dates.
Values returned by the YEAR, MONTH and DAY functions will be Gregorian values
regardless of the display format for the supplied date value. For example, if the display
format of the supplied date is Hijri, the returned values for the YEAR, MONTH and DAY
functions will be values associated with the equivalent Gregorian date.
When the date argument is a text representation of the date, the day function uses the
locale and date/time settings of the client computer to understand the text value in
order to perform the conversion. If the current date/time settings represent dates in the
format of Month/Day/Year, then the string, "1/8/2009", is interpreted as a datetime
value equivalent to January 8th of 2009, and the function returns 8. However, if the
current date/time settings represent dates in the format of Day/Month/Year, the same

 87

string would be interpreted as a datetime value equivalent to August 1st of 2009, and
the function returns 1.
Example: Getting the Day from a Date Column
Description
The following formula returns the day from the date in the column, [Birthdate].
Code
=DAY([Birthdate])

Example: Getting the Day from a String Date
Description
The following formulas return the day, 4, using dates that have been supplied as strings
in an accepted text format.
Code
=DAY("3-4-1007")

=DAY("March 4 2007")

Example: Using a Day Value as a Condition
Description
The following expression returns the day that each sales order was placed, and flags the
row as a promotional sale item if the order was placed on the 10th of the month.
Code
=IF(DAY([SalesDate])=10,"promotion","")

See Also
Date and Time functions
TODAY
DATE

EDATE Function
Returns the date that is the indicated number of months before or after the start date.
Use EDATE to calculate maturity dates or due dates that fall on the same day of the
month as the date of issue.
Syntax

EDATE(<start_date>, <months>)
Parameters

 88

Term Definition

start_date A date in datetime or text format that
represents the start date.

months An integer that represents the number of
months before or after start_date.

Return Value
A date (datetime).
Remarks
In contrast to Microsoft Excel, which stores dates as sequential serial numbers, DAX
works with dates in a datetime format. Dates stored in other formats are converted
implicitly.
If start_date is not a valid date, EDATE returns an error. Make sure that the column
reference or date that you supply as the first argument is a date.
If months is not an integer, it is truncated.
When the date argument is a text representation of the date, the EDATE function uses
the locale and date time settings of the client computer to understand the text value in
order to perform the conversion. If the current date time settings represent a date in the
format of Month/Day/Year, then the following string "1/8/2009" is interpreted as a
datetime value equivalent to January 8th of 2009. However, if the current date time
settings represent a date in the format of Day/Month/Year, the same string would be
interpreted as a datetime value equivalent to August 1st of 2009.
If the requested date is past the last day of the corresponding month, then the last day
of the month is returned. For example, the following functions: EDATE("2009-01-29", 1),
EDATE("2009-01-30", 1), EDATE("2009-01-31", 1) return February 28th of 2009; that
corresponds to one month after the start date.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following example returns the date three months after the order date, which is
stored in the column [TransactionDate].
Code
=EDATE([TransactionDate],3)

See Also
EOMONTH

http://go.microsoft.com/fwlink/?LinkId=219171�

 89

Date and Time functions

EOMONTH Function
Returns the date in datetime format of the last day of the month, before or after a
specified number of months. Use EOMONTH to calculate maturity dates or due dates
that fall on the last day of the month.
Syntax

EOMONTH(<start_date>, <months>)
Parameters

Term Definition

start_date The start date in datetime format, or in an
accepted text representation of a date.

months A number representing the number of
months before or after the start_date.

Note
If you enter a number that is not an
integer, the number is rounded up
or down to the nearest integer.

Return Value
A date (datetime).
Remarks
In contrast to Microsoft Excel, which stores dates as sequential serial numbers, DAX
works with dates in a datetime format. The EOMONTH function can accept dates in
other formats, with the following restrictions:
If start_date is not a valid date, EOMONTH returns an error.
If start_date is a numeric value that is not in a datetime format, EOMONTH will convert
the number to a date. To avoid unexpected results, convert the number to a datetime
format before using the EOMONTH function.
If start_date plus months yields an invalid date, EOMONTH returns an error. Dates
before March 1st of 1900 and after December 31st of 9999 are invalid.
When the date argument is a text representation of the date, the EDATE function uses
the locale and date time settings, of the client computer, to understand the text value in
order to perform the conversion. If current date time settings represent a date in the

 90

format of Month/Day/Year, then the following string "1/8/2009" is interpreted as a
datetime value equivalent to January 8th of 2009. However, if the current date time
settings represent a date in the format of Day/Month/Year, the same string would be
interpreted as a datetime value equivalent to August 1st of 2009.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following expression returns May 31, 2008, because the months argument is
rounded to 2.
Code
=EOMONTH("March 3, 2008",1.5)

See Also
EDATE
Date and Time functions

HOUR Function
Returns the hour as a number from 0 (12:00 A.M.) to 23 (11:00 P.M.).
Syntax

HOUR(<datetime>)
Parameters

Term Definition

datetime A datetime value, such as 16:48:00 or 4:48
PM.

Return Value
An integer number from 0 to 23.
Remarks
The HOUR function takes as argument the time that contains the hour you want to find.
You can supply the time by using a date/time function, an expression that returns a
datetime, or by typing the value directly in one of the accepted time formats. Times can
also be entered as any accepted text representation of a time.

http://go.microsoft.com/fwlink/?LinkId=219171�

 91

When the datetime argument is a text representation of the date and time, the function
uses the locale and date/time settings of the client computer to understand the text
value in order to perform the conversion. Most locales use the colon (:) as the time
separator and any input text using colons as time separators will parse correctly. Review
your locale settings to understand your results.
Example
Description
The following example returns the hour from the TransactionTime column of a table
named Orders.
Code
=HOUR('Orders'[TransactionTime])

Example
Description
The following example returns 15, meaning the hour corresponding to 3 PM in a 24-hour
clock. The text value is automatically parsed and converted to a date/time value.
Code
=HOUR("March 3, 2008 3:00 PM")

See Also
Date and Time functions
MINUTE
YEAR
SECOND

MINUTE Function
Returns the minute as a number from 0 to 59, given a date and time value.
Syntax

MINUTE(<datetime>)
Parameters

Term Definition

datetime A datetime value or text in an accepted
time format, such as 16:48:00 or 4:48 PM.

Return Value
An integer number from 0 to 59.

 92

Remarks
In contrast to Microsoft Excel, which stores dates and times in a serial numeric format,
DAX uses a datetime data type for dates and times. You can provide the datetime value
to the MINUTE function by referencing a column that stores dates and times, by using a
date/time function, or by using an expression that returns a date and time.
When the datetime argument is a text representation of the date and time, the function
uses the locale and date/time settings of the client computer to understand the text
value in order to perform the conversion. Most locales use the colon (:) as the time
separator and any input text using colons as time separators will parse correctly. Verify
your locale settings to understand your results.
Example
Description
The following example returns the minute from the value stored in the TransactionTime
column of the Orders table.
Code
=MINUTE(Orders[TransactionTime])

Example
Description
The following example returns 45, which is the number of minutes in the time 1:45 PM.
Code
=MINUTE("March 23, 2008 1:45 PM")

See Also
Date and Time functions
HOUR
YEAR
SECOND

MONTH Function
Returns the month as a number from 1 (January) to 12 (December).
Syntax

MONTH(<datetime>)
Parameters

Term Definition

date A date in datetime or text format.

 93

Return Value
An integer number from 1 to 12.
Remarks
In contrast to Microsoft Excel, which stores dates as serial numbers, DAX uses a datetime
format when working with dates. You can enter the date used as argument to the
MONTH function by typing an accepted datetime format, by providing a reference to a
column that contains dates, or by using an expression that returns a date.
Values returned by the YEAR, MONTH and DAY functions will be Gregorian values
regardless of the display format for the supplied date value. For example, if the display
format of the supplied date is Hijri, the returned values for the YEAR, MONTH and DAY
functions will be values associated with the equivalent Gregorian date.
When the date argument is a text representation of the date, the function uses the locale
and date time settings of the client computer to understand the text value in order to
perform the conversion. If the current date time settings represent a date in the format
of Month/Day/Year, then the following string "1/8/2009" is interpreted as a datetime
value equivalent to January 8th of 2009, and the function yields a result of 1. However, if
the current date time settings represent a date in the format of Day/Month/Year, then
the same string would be interpreted as a datetime value equivalent to August 1st of
2009, and the function yields a result of 8.
If the text representation of the date cannot be correctly converted to a datetime value,
the function returns an error.
Example
Description
The following expression returns 3, which is the integer corresponding to March, the
month in the date argument.
Code
=MONTH("March 3, 2008 3:45 PM")

Example
Description
The following expression returns the month from the date in the TransactionDate
column of the Orders table.
Code
=MONTH(Orders[TransactionDate])

See Also
Date and Time functions
HOUR
MINUTE

 94

YEAR
SECOND

NOW Function
Returns the current date and time in datetime format.
The NOW function is useful when you need to display the current date and time on a
worksheet or calculate a value based on the current date and time, and have that value
updated each time you open the worksheet.
Syntax

NOW()
Return Value
A date (datetime).
Remarks
In contrast to Microsoft Excel, which stores dates and times as serial numbers, DAX uses
a datetime format to work with dates. Dates that are not in this format are implicitly
converted when you use dates and times in a formula.
The result of the NOW function changes only when the column that contains the formula
is refreshed. It is not updated continuously.
The TODAY function returns the same date but is not precise with regard to time; the
time returned is always 12:00:00 AM and only the date is updated.
Example
Description
The following example returns the current date and time plus 3.5 days:
Code
=NOW()+3.5

See Also
Date and Time functions
TODAY

SECOND Function
Returns the seconds of a time value, as a number from 0 to 59.
Syntax

SECOND(<time>)
Parameters

 95

Term Definition

time A time in datetime format, such as
16:48:23 or 4:48:47 PM.

Return Value
An integer number from 0 to 59.
Remarks
In contrast to Microsoft Excel, which stores dates and times as serial numbers, DAX uses
a datetime format when working with dates and times. If the source data is not in this
format, DAX implicitly converts the data. You can use formatting to display the dates and
times as a serial number of you need to.
The date/time value that you supply as an argument to the SECOND function can be
entered as a text string within quotation marks (for example, "6:45 PM"). You can also
provide a time value as the result of another expression, or as a reference to a column
that contains times.
If you provide a numeric value of another data type, such as 13.60, the value is
interpreted as a serial number and is represented as a datetime data type before
extracting the value for seconds. To make it easier to understand your results, you might
want to represent such numbers as dates before using them in the SECOND function. For
example, if you use SECOND with a column that contains a numeric value such as, 25.56,
the formula returns 24. That is because, when formatted as a date, the value 25.56 is
equivalent to January 25, 1900, 1:26:24 PM.
When the time argument is a text representation of a date and time, the function uses
the locale and date/time settings of the client computer to understand the text value in
order to perform the conversion. Most locales use the colon (:) as the time separator and
any input text using colons as time separators will parse correctly. Review your locale
settings to understand your results.
Example
Description
The following formula returns the number of seconds in the time contained in the
TransactionTime column of a table named Orders.
Code
=SECOND('Orders'[TransactionTime])

Example
Description
The following formula returns 3, which is the number of seconds in the time represented
by the value, March 3, 2008 12:00:03.

 96

Code
=SECOND("March 3, 2008 12:00:03")

See Also
Date and Time functions
HOUR
MINUTE
YEAR

TIME Function
Converts hours, minutes, and seconds given as numbers to a time in datetime format.
Syntax

TIME(hour, minute, second)
Parameters

Term Definition

hour A number from 0 to 23 representing the
hour.
Any value greater than 23 will be divided
by 24 and the remainder will be treated as
the hour value.

minute A number from 0 to 59 representing the
minute.
Any value greater than 59 will be converted
to hours and minutes.

second A number from 0 to 59 representing the
second.
Any value greater than 59 will be converted
to hours, minutes, and seconds.

Return Value
A time (datetime).
Remarks
In contrast to Microsoft Excel, which stores dates and times as serial numbers, DAX works
with date and time values in a datetime format. Numbers in other formats are implicitly

 97

converted when you use a date/time value in a DAX function. If you need to use serial
numbers, you can use formatting to change the way that the numbers are displayed.
Time values are a portion of a date value, and in the serial number system are
represented by a decimal number. Therefore, the datetime value 12:00 PM is equivalent
to 0.5, because it is half of a day.
You can supply the arguments to the TIME function as values that you type directly, as
the result of another expression, or by a reference to a column that contains a numeric
value. The following restrictions apply:
• Any value for hours that is greater than 23 will be divided by 24 and the remainder

will be treated as the hour value.
• Any value for minutes that is greater than 59 will be converted to hours and minutes.
• Any value for seconds that is greater than 59 will be converted to hours, minutes,

and seconds.
• For minutes or seconds, a value greater than 24 hours will be divided by 24 and the

reminder will be treated as the hour value. A value in excess of 24 hours does not
alter the date portion.

To improve readability of the time values returned by this function, we recommend that
you format the column or PivotTable cell that contains the results of the formula by
using one of the time formats provided by Microsoft Excel.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following examples both return the time, 3:00 AM:
Code
=TIME(27,0,0)

=TIME(3,0,0)

Example
Description
The following examples both return the time, 12:30 PM:
Code
=TIME(0,750,0)

=TIME(12,30,0)

Example
Description
The following example creates a time based on the values in the columns, intHours,
intMinutes, intSeconds:

http://go.microsoft.com/fwlink/?LinkId=219171�

 98

Code
=TIME([intHours],[intMinutes],[intSeconds])

See Also
DATE
Date and Time functions

TIMEVALUE Function
Converts a time in text format to a time in datetime format.
Syntax

TIMEVALUE(time_text)
Parameters

Term Definition

time_text A text string that that represents a certain
time of the day. Any date information
included in the time_text argument is
ignored.

Return Value
A date (datetime).
Remarks
Time values are a portion of a date value and represented by a decimal number. For
example, 12:00 PM is represented as 0.5 because it is half of a day.
When the time_text argument is a text representation of the date and time, the function
uses the locale and date/time settings of the client computer to understand the text
value in order to perform the conversion. Most locales use the colon (:) as the time
separator, and any input text using colons as time separators will parse correctly. Review
your locale settings to understand your results.
Example
Description
Code
=TIMEVALUE("20:45:30")

Comments
See Also
Date and Time functions

 99

TODAY Function
Returns the current date.
Syntax

TODAY()
Return Value
A date (datetime).
Remarks
The TODAY function is useful when you need to have the current date displayed on a
worksheet, regardless of when you open the workbook. It is also useful for calculating
intervals.

If the TODAY function does not update the date when you expect it to, you might
need to change the settings that control when the column or workbook is
refreshed. For more information, see Data Refresh.

The NOW function is similar but returns the exact time, whereas TODAY returns the time
value 12:00:00 PM for all dates.
Example
Description
If you know that someone was born in 1963, you might use the following formula to find
that person's age as of this year's birthday:
Code
=YEAR(TODAY())-1963

Comments
This formula uses the TODAY function as an argument for the YEAR function to obtain
the current year, and then subtracts 1963, returning the person's age.
See Also
Date and Time functions
NOW

WEEKDAY Function
Returns a number from 1 to 7 identifying the day of the week of a date. By default the
day ranges from 1 (Sunday) to 7 (Saturday).
Syntax

WEEKDAY(<date>, <return_type>)

Note

http://msdn.microsoft.com/en-us/library/d70b953f-4716-413f-8021-a69be0ef9b6b(SQL.110)�

 100

Parameters

Term Definition

date A date in datetime format.
Dates should be entered by using the DATE
function, by using expressions that result in
a date, or as the result of other formulas.

return_type A number that determines the return value:

Return type Week begins

1 Week begins on
Sunday (1) and ends
on Saturday (7).

2 Week begins on
Monday (1) and
ends on Sunday (7).

3 Week begins on
Monday (0) and
ends on Sunday (6).

Return Value
An integer number from 1 to 7.
Remarks
In contrast to Microsoft Excel, which stores dates as serial numbers, DAX works with
dates and times in a datetime format. If you need to display dates as serial numbers,
you can use the formatting options in Excel.
You can also type dates in an accepted text representation of a date, but to avoid
unexpected results, it is best to convert the text date to a datetime format first.
When the date argument is a text representation of the date, the function uses the locale
and date/time settings of the client computer to understand the text value in order to
perform the conversion. If the current date/time settings represent dates in the format of
Month/Day/Year, then the string, "1/8/2009", is interpreted as a datetime value
equivalent to January 8th of 2009. However, if the current date/time settings represent

 101

dates in the format of Day/Month/Year, then the same string would be interpreted as a
datetime value equivalent to August 1st of 2009.
Example
Description
The following example gets the date from the [HireDate] column, adds 1, and displays
the weekday corresponding to that date. Because the return_type argument has been
omitted, the default format is used, in which 1 is Sunday and 7 is Saturday. If the result is
4, the day would be Wednesday.
Code
=WEEKDAY([HireDate]+1)

See Also
Date and Time functions
WEEKNUM
YEARFRAC

WEEKNUM Function
Returns the week number for the given date and year according to the return_type
value. The week number indicates where the week falls numerically within a year.
Syntax

WEEKNUM(<date>, <return_type>)
Parameters

Term Definition

date The date in datetime format.

return_type A number that determines the return value:
use 1 when the week begins on Sunday;
use 2 when the week begins on Monday.
The default is 1.

Return type Week begins

1 Week begins on
Sunday. Weekdays
are numbered 1
through 7.

 102

Term Definition

2 Week begins on
Monday. Weekdays
are numbered 1
through 7.

Return Value
An integer number.
Remarks
In contrast to Microsoft Excel, which stores dates as serial numbers, DAX uses a datetime
data type to work with dates and times. If the source data is in a different format, DAX
implicitly converts the data to datetime to perform calculations.
By default, the WEEKNUM function uses a calendar convention in which the week
containing January 1 is considered to be the first week of the year. However, the ISO
8601 calendar standard, widely used in Europe, defines the first week as the one with the
majority of days (four or more) falling in the new year. This means that for years in which
there are three days or less in the first week of January, the WEEKNUM function returns
week numbers that are different from the ISO 8601 definition.
Example
Description
The following example returns the week number of the date February 14, 2010.
Code
=WEEKNUM("Feb 14, 2010", 2)

Example
Description
The following example returns the week number of the date stored in the column,
HireDate, from the table, Employees.
Code
=WEEKNUM('Employees'[HireDate])

See Also
Date and Time functions
YEARFRAC
WEEKDAY

 103

YEAR Function
Returns the year of a date as a four digit integer in the range 1900-9999.
Syntax

YEAR(<date>)
Parameters

Term Definition

date A date in datetime or text format,
containing the year you want to find.

Return Value
An integer in the range 1900-9999.
Remarks
In contrast to Microsoft Excel, which stores dates as serial numbers, DAX uses a datetime
data type to work with dates and times.
Dates should be entered by using the DATE function, or as results of other formulas or
functions. You can also enter dates in accepted text representations of a date, such as
March 3, 2007, or Mar-3-2003.
Values returned by the YEAR, MONTH, and DAY functions will be Gregorian values
regardless of the display format for the supplied date value. For example, if the display
format of the supplied date uses the Hijri calendar, the returned values for the YEAR,
MONTH, and DAY functions will be values associated with the equivalent Gregorian date.
When the date argument is a text representation of the date, the function uses the locale
and date time settings of the client computer to understand the text value in order to
perform the conversion. Errors may arise if the format of strings is incompatible with the
current locale settings. For example, if your locale defines dates to be formatted as
month/day/year, and the date is provided as day/month/year, then 25/1/2009 will not be
interpreted as January 25th of 2009 but as an invalid date.
Example
Description
The following example returns 2007.
Code
=YEAR("March 2007")

Example: Date as Result of Expression
Description

 104

The following example returns the year for today's date.
Code
=YEAR(TODAY())

See Also
Date and Time functions
HOUR
MINUTE
YEAR
SECOND

YEARFRAC Function
Calculates the fraction of the year represented by the number of whole days between
two dates. Use the YEARFRAC worksheet function to identify the proportion of a whole
year's benefits or obligations to assign to a specific term.
Syntax

YEARFRAC(<start_date>, <end_date>, <basis>)
Parameters

Term Definition

start_date The start date in datetime format.

end_date The end date in datetime format.

basis (Optional) The type of day count basis to
use. All arguments are truncated to
integers.

Basis Description

0 US (NASD) 30/360

1 Actual/actual

2 Actual/360

3 Actual/365

4 European 30/360

 105

Term Definition

Return Value
A decimal number. The internal data type is a signed IEEE 64-bit (8-byte) double-
precision floating-point number.
Remarks
In contrast to Microsoft Excel, which stores dates as serial numbers, DAX uses a datetime
format to work with dates and times. If you need to view dates as serial numbers, you
can use the formatting options in Excel.
If start_date or end_date are not valid dates, YEARFRAC returns an error.
If basis < 0 or if basis > 4, YEARFRAC returns an error.
Example
Description
The following example returns the fraction of a year represented by the difference
between the dates in the two columns, TransactionDate and ShippingDate:
Code
=YEARFRAC(Orders[TransactionDate],Orders[ShippingDate])

Example
Description
The following example returns the fraction of a year represented by the difference
between the dates, January 1 and March 1:
Code
=YEARFRAC("Jan 1 2007","Mar 1 2007")

Comments
Use four-digit years whenever possible, to avoid getting unexpected results. When the
year is truncated, the current year is assumed. When the date is or omitted, the first date
of the month is assumed.
The second argument, basis, has also been omitted. Therefore, the year fraction is
calculated according to the US (NASD) 30/360 standard.
See Also
Date and Time functions
WEEKNUM
YEARFRAC
WEEKDAY

 106

Filter Functions
The filter and value functions in DAX are some of the most complex and powerful, and
differ greatly from Excel functions. The lookup functions work by using tables and
relationships, like a database. The filtering functions let you manipulate data context to
create dynamic calculations. For a discussion of context, see Context in DAX Formulas.

In this Section
ALL Function
ALLEXCEPT Function
ALLNOBLANKROW Function
ALLSELECTED Function
CALCULATE Function
CALCULATETABLE Function
DISTINCT Function
EARLIER Function
EARLIEST Function
FILTER Function
FILTERS Function
HASONEFILTER Function
HASONEVALUE Function
ISCROSSFILTERED Function
ISFILTERED Function
RELATED Function
RELATEDTABLE Function
VALUES Function

Reference
Using DAX
Basic DAX Syntax

Related Sections
Date and Time Functions (DAX)
Aggregation Functions (DAX)
Logical Functions (DAX)
Filter and Value Functions (DAX)
Math and Trigonometric Functions (DAX)

See Also

http://msdn.microsoft.com/en-us/library/149b510d-41f1-49ba-86fa-c2a9eac85896(SQL.110)�
http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�

 107

Getting Started with Data Analysis Expressions (DAX)

ALL Function
Returns all the rows in a table, or all the values in a column, ignoring any filters that
might have been applied. This function is useful for clearing filters and creating
calculations on all the rows in a table.
Syntax

ALL({<table> | <column>[, <column>[, <column>[,…]]]})
Parameters

Term Definition

table The table that you want to clear filters on.

column The column that you want to clear filters
on.

The argument to the ALL function must be either a reference to a base table or a
reference to a base column. You cannot use table expressions or column expressions
with the ALL function.
Return Value
The table or column with filters removed.
Remarks
This function is not used by itself, but serves as an intermediate function that can be
used to change the set of results over which some other calculation is performed.
As described in the following table, you can use the ALL and ALLEXCEPT functions in
different scenarios.

Function and Usage Description

ALL(Table) Removes all filters from the specified table.
In effect, ALL(Table) returns all of the values
in the table, removing any filters from the
context that otherwise might have been
applied.
This function is useful when you are
working with many levels of grouping, and
want to create a calculation that creates a

http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�

 108

Function and Usage Description

ratio of an aggregated value to the total
value. The first example demonstrates this
scenario.

ALL (Column[, Column[, …]]) Removes all filters from the specified
columns in the table; all other filters on
other columns in the table still apply. All
column arguments must come from the
same table.
The ALL(Column) variant is useful when you
want to remove the context filters for one
or more specific columns and to keep all
other context filters.
The second and third examples
demonstrate this scenario.

ALLEXCEPT(Table, Column1 [,Column2]...) Removes all context filters in the table
except filters that are applied to the
specified columns.
This is a convenient shortcut for situations
in which you want to remove the filters on
many, but not all, columns in a table.

Example: Calculate Ratio of Category Sales to Total Sales
Description
Assume that you want to find the amount of sales for the current cell, in your PivotTable,
divided by the total sales for all resellers. To ensure that the denominator is the same
regardless of how the PivotTable user might be filtering or grouping the data, you define
a formula that uses ALL to create the correct grand total.
The following table shows the results when a new measure, All Reseller Sales Ratio, is
created using the formula shown in the code section. To see how this works, add the
field, CalendarYear, to the Row Labels area of the PivotTable, and add the field,
ProductCategoryName, to the Column Labels area. Then, drag the measure, All Reseller
Sales Ratio, to the Values area of the Pivot Table. To view the results as percentages,
use the formatting features of Excel to apply a percentage number formatting to the
cells that contains the measure.

 109

All Reseller
Sales

Column Labels

Row Labels Accessories Bikes Clothing Components Grand Total

2005 0.02% 9.10% 0.04% 0.75% 9.91%

2006 0.11% 24.71% 0.60% 4.48% 29.90%

2007 0.36% 31.71% 1.07% 6.79% 39.93%

2008 0.20% 16.95% 0.48% 2.63% 20.26%

Grand
Total

0.70% 82.47% 2.18% 14.65% 100.00%

Code
=SUMX(ResellerSales_USD,

ResellerSales_USD[SalesAmount_USD])/SUMX(ALL(ResellerSales_USD),

ResellerSales_USD[SalesAmount_USD])

Comments
The formula is constructed as follows:
1. The numerator, SUMX(ResellerSales_USD,

ResellerSales_USD[SalesAmount_USD]), is the sum of the values in
ResellerSales_USD[SalesAmount_USD] for the current cell in the PivotTable, with
context filters applied on CalendarYear and ProductCategoryName.

2. For the denominator, you start by specifying a table, ResellerSales_USD, and use the
ALL function to remove all context filters on the table.

3. You then use the SUMX function to sum the values in the
ResellerSales_USD[SalesAmount_USD] column. In other words, you get the sum of
ResellerSales_USD[SalesAmount_USD] for all resellers sales.

For more information about creating measures, see Create a Measure.

The above example uses the tables, ResellerSales_USD, DateTime, and
ProductCategory from the DAX sample workbook. For more information about
samples, see Get Sample Data .

Example: Calculate Ratio of Product Sales to Total Sales Through Current
Year
Description
Assume that you want to create a table showing the percentage of sales compared over
the years for each product category (ProductCategoryName). To obtain the percentage
for each year over each value of ProductCategoryName, you need to divide the sum of

Note

http://msdn.microsoft.com/en-us/library/a41f3b85-46d0-4e2c-bd34-665a41412624(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=164474�

 110

sales for that particular year and product category by the sum of sales for the same
product category over all years. In other words, you want to keep the filter on
ProductCategoryName but remove the filter on the year when calculating the
denominator of the percentage.
The following table shows the results when a new measure, Reseller Sales Year, is
created using the formula shown in the code section. To see how this works, add the
field, CalendarYear, to the Row Labels area of the PivotTable, and add the field,
ProductCategoryName, to the Column Labels area. To view the results as percentages,
use Excel's formatting features to apply a percentage number format to the cells
containing the measure, Reseller Sales Year.

Reseller
Sales Year

Column Labels

Row
Labels

Accessories Bikes Clothing Components Grand Total

2005 3.48% 11.03% 1.91% 5.12% 9.91%

2006 16.21% 29.96% 27.29% 30.59% 29.90%

2007 51.62% 38.45% 48.86% 46.36% 39.93%

2008 28.69% 20.56% 21.95% 17.92% 20.26%

Grand
Total

100.00% 100.00% 100.00% 100.00% 100.00%

Code
=SUMX(ResellerSales_USD, ResellerSales_USD[SalesAmount_USD])/CALCULATE(

SUM(ResellerSales_USD[SalesAmount_USD]), ALL(DateTime[CalendarYear]))

Comments
The formula is constructed as follows:
1. The numerator, SUMX(ResellerSales_USD,

ResellerSales_USD[SalesAmount_USD]), is the sum of the values in
ResellerSales_USD[SalesAmount_USD] for the current cell in the pivot table, with
context filters applied on the columns CalendarYear and ProductCategoryName.

2. For the denominator, you remove the existing filter on CalendarYear by using the
ALL(Column) function. This calculates the sum over the remaining rows on the
ResellerSales_USD table, after applying the existing context filters from the column
labels. The net effect is that for the denominator the sum is calculated over the
selected ProductCategoryName (the implied context filter) and for all values in Year.

For more information about creating measures, see Create a Measure.

http://msdn.microsoft.com/en-us/library/a41f3b85-46d0-4e2c-bd34-665a41412624(SQL.110)�

 111

This example uses the tables, ResellerSales_USD, DateTime, and ProductCategory
from the DAX sample workbook. For more information about samples, see Get
Sample Data .

Example: Calculate Contribution of Product Categories to Total Sales Per
Year
Description
Assume that you want to create a table that shows the percentage of sales for each
product category, on a year-by-year basis. To obtain the percentage for each product
category in a particular year, you need to calculate the sum of sales for that particular
product category (ProductCategoryName) in year , and then divide the resulting value by
the sum of sales for the year over all product categories. In other words, you want to
keep the filter on year but remove the filter on ProductCategoryName when calculating
the denominator of the percentage.
The following table shows the results when a new measure, Reseller Sales
CategoryName, is created using the formula shown in the code section. To see how this
works, add the field, CalendarYear to the Row Labels area of the PivotTable, and add the
field, ProductCategoryName, to the Column Labels area. Then add the new measure to
the Values area of the PivotTable. To view the results as percentages, use Excel's
formatting features to apply a percentage number format to the cells that contain the
new measure, Reseller Sales CategoryName.

Reseller Sales
CategoryName

Column Labels

Row Labels Accessories Bikes Clothing Components Grand Total

2005 0.25% 91.76% 0.42% 7.57% 100.00%

2006 0.38% 82.64% 1.99% 14.99% 100.00%

2007 0.90% 79.42% 2.67% 17.01% 100.00%

2008 0.99% 83.69% 2.37% 12.96% 100.00%

Grand Total 0.70% 82.47% 2.18% 14.65% 100.00%

Code
=SUMX(ResellerSales_USD, ResellerSales_USD[SalesAmount_USD])/CALCULATE(

SUM(ResellerSales_USD[SalesAmount_USD]),

ALL(ProductCategory[ProductCategoryName]))

Comments

Note

http://go.microsoft.com/fwlink/?LinkId=164474�
http://go.microsoft.com/fwlink/?LinkId=164474�

 112

The formula is constructed as follows:
1. The numerator, SUMX(ResellerSales_USD,

ResellerSales_USD[SalesAmount_USD]), is the sum of the values in
ResellerSales_USD[SalesAmount_USD] for the current cell in the PivotTable, with
context filters applied on the fields, CalendarYear and ProductCategoryName.

2. For the denominator, you use the function, ALL(Column), to remove the filter on
ProductCategoryName and calculate the sum over the remaining rows on the
ResellerSales_USD table, after applying the existing context filters from the row
labels. The net effect is that, for the denominator, the sum is calculated over the
selected Year (the implied context filter) and for all values of ProductCategoryName.

For more information about creating measures, see Create a Measure.

This example uses the tables, ResellerSales_USD, DateTime, and ProductCategory
from the DAX sample workbook. For more information about samples, see Get
Sample Data.

See Also
Filter and value functions
ALL
ALLEXCEPT
FILTER

ALLEXCEPT Function
Removes all context filters in the table except filters that have been applied to the
specified columns.
Syntax

ALLEXCEPT(<table>,<column>[,<column>[,…]])
Parameters

Term Definition

table The table over which all context filters are
removed, except filters on those columns
that are specified in subsequent
arguments.

column The column for which context filters must
be preserved.

Note

http://msdn.microsoft.com/en-us/library/a41f3b85-46d0-4e2c-bd34-665a41412624(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=164474�
http://go.microsoft.com/fwlink/?LinkId=164474�

 113

The first argument to the ALLEXCEPT function must be a reference to a base table; all
subsequent arguments must be references to base columns. You cannot use table
expressions or column expressions with the ALLEXCEPT function.
Return Value
A table with all filters removed except for the filters on the specified columns.
Remarks
This function is not used by itself, but serves as an intermediate function that can be
used to change the set of results over which some other calculation is performed.
As described in the following table, you can use the ALL and ALLEXCEPT functions in
different scenarios.

Function and Usage Description

ALL(Table) Removes all filters from the specified table.
In effect, ALL(Table) returns all of the values
in the table, removing any filters from the
context that otherwise might have been
applied.
This function is useful when you are
working with many levels of grouping, and
want to create a calculation that creates a
ratio of an aggregated value to the total
value.

ALL (Column[, Column[, …]]) Removes all filters from the specified
columns in the table; all other filters on
other columns in the table still apply. All
column arguments must come from the
same table.
The ALL(Column) variant is useful when you
want to remove the context filters for one
or more specific columns and to keep all
other context filters.

ALLEXCEPT(Table, Column1 [,Column2]...) Removes all context filters in the table
except filters that are applied to the
specified columns.
This is a convenient shortcut for situations
in which you want to remove the filters on
many, but not all, columns in a table.

 114

Example
Description
The following example presents a formula that you can use in a measure. For more
information about how to create a measure, see Create a Measure.
The formula sums SalesAmount_USD and uses the ALLEXCEPT function to remove any
context filters on the DateTime table except if the filter has been applied to the
CalendarYear column.

The above example uses the tables, ResellerSales_USD and DateTime from the
DAX sample workbook. For more information about samples, see Get Sample
Data .

Code
=CALCULATE(SUM(ResellerSales_USD[SalesAmount_USD]), ALLEXCEPT(DateTime,

DateTime[CalendarYear]))

Comments
Because the formula uses ALLEXCEPT, whenever any column but CalendarYear from the
table DateTime is used to slice the PivotTable, the formula will remove any slicer filters,
providing a value equal to the sum of SalesAmount_USD for the column label value, as
shown in Table 1.
However, if the column CalendarYear is used to slice the PivotTable, the results are
different. Because CalendarYear is specified as the argument to ALLEXCEPT, when the
data is sliced on the year, a filter will be applied on years at the row level, as shown in
Table 2. The user is encouraged to compare these tables to understand the behavior of
ALLEXCEPT().
See Also
Filter and value functions
ALL
FILTER

ALLNOBLANKROW Function
From the parent table of a relationship, returns all rows but the blank row, or all distinct
values of a column but the blank row, and disregards any context filters that might exist.
Syntax

ALLNOBLANKROW(<table>|<column>)
Parameters

Note

http://msdn.microsoft.com/en-us/library/a41f3b85-46d0-4e2c-bd34-665a41412624(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=164474�
http://go.microsoft.com/fwlink/?LinkId=164474�

 115

Term Definition

table The table over which all context filters are
removed.

column The column over which all context filters
are removed.

Only one parameter must be passed; the parameter is either a table or a column.
Return Value
A table, when the passed parameter was a table, or a column of values, when the passed
parameter was a column.
Remarks
The ALLNOBLANKROW function only filters the blank row that a parent table, in a
relationship, will show when there are one or more rows in the child table that have non-
matching values to the parent column. See the example below for a thorough
explanation.
The following table summarizes the variations of ALL that are provided in DAX, and their
differences:

Function and Usage Description

ALL(Column) Removes all filters from the specified
column in the table; all other filters in the
table, over other columns, still apply.

ALL(Table) Removes all filters from the specified table.

ALLEXCEPT(Table,Col1,Col2...) Overrides all context filters in the table
except over the specified columns.

ALLNOBLANK(table|column) From the parent table of a relationship,
returns all rows but the blank row, or all
distinct values of a column but the blank
row, and disregards any context filters that
might exist

For a general description of how the ALL function works, together with step-by-step
examples that use ALL(Table) and ALL(Column), see ALL Function (DAX).
Example
Description

 116

In the sample data, the ResellerSales_USD table contains one row that has no values and
therefore cannot be related to any of the parent tables in the relationships within the
workbook. You will use this table in a PivotTable so that you can see the blank row
behavior and how to handle counts on unrelated data.
Step 1: Verify the unrelated data
Open the PowerPivot window, then select the ResellerSales_USD table. In the
ProductKey column, filter for blank values. One row will remain. In that row, all column
values should be blank except for SalesOrderLineNumber.
Step 2: Create a PivotTable
Create a new PivotTable, then drag the column, datetime.[Calendar Year], to the Row
Labels pane. The following table shows the expected results:

Row Labels

2005

2006

2007

2008

Grand Total

Note the blank label between 2008 and Grand Total. This blank label represents the
Unknown member, which is a special group that is created to account for any values in
the child table that have no matching value in the parent table, in this example the
datetime.[Calendar Year] column.
When you see this blank label in the PivotTable, you know that in some of the tables that
are related to the column, datetime.[Calendar Year], there are either blank values or non-
matching values. The parent table is the one that shows the blank label, but the rows
that do not match are in one or more of the child tables.
The rows that get added to this blank label group are either values that do not match
any value in the parent table-- for example, a date that does not exist in the datetime
table-- or null values, meaning no value for date at all. In this example we have placed a
blank value in all columns of the child sales table. Having more values in the parent table
than in the children tables does not cause a problem.
Step 3: Count rows using ALL and ALLNONBLANK
Add the following two measures to the datetime table, to count the table rows:
Countrows ALLNOBLANK of datetime, Countrows ALL of datetime. The formulas
that you can use to define these measures are given in the code section following.

 117

On a blank PivotTable add datetime.[Calendar Year] column to the row labels, and then
add the newly created measures. The results should look like the following table:

Row Labels Countrows ALLNOBLANK of
datetime

Countrows ALL of datetime

2005 1280 1281

2006 1280 1281

2007 1280 1281

2008 1280 1281

 1280 1281

Grand Total 1280 1281

The results show a difference of 1 row in the table rows count. However, if you open the
PowerPivot window and select the datetime table, you cannot find any blank row in the
table because the special blank row mentioned here is the Unknown member.
Step 4: Verify that the count is accurate
In order to prove that the ALLNOBLANKROW does not count any truly blank rows, and
only handles the special blank row on the parent table only, add the following two
measures to the ResellerSales_USD table: Countrows ALLNOBLANKROW of
ResellerSales_USD, Countrows ALL of ResellerSales_USD.
Create a new PivotTable, and drag the column, datetime.[Calendar Year], to the Row
Labels pane. Now add the measures that you just created. The results should look like
the following:

Row Labels Countrows ALLNOBLANKROW of
ResellerSales_USD

Countrows ALL of
ResellerSales_USD

2005 60856 60856

2006 60856 60856

2007 60856 60856

2008 60856 60856

 60856 60856

Grand Total 60856 60856

 118

Now the two measures have the same results. That is because the ALLNOBLANKROW
function does not count truly blank rows in a table, but only handles the blank row that
is a special case generated in a parent table, when one or more of the child tables in the
relationship contain non-matching values or blank values.
Code
// Countrows ALLNOBLANK of datetime

= COUNTROWS(ALLNOBLANKROW('DateTime'))

// Countrows ALL of datetime

= COUNTROWS(ALL('DateTime'))

// Countrows ALLNOBLANKROW of ResellerSales_USD

=COUNTROWS(ALLNOBLANKROW('ResellerSales_USD'))

// Countrows ALL of ResellerSales_USD

=COUNTROWS(ALL('ResellerSales_USD'))

Comments
See Also
Filter and value functions
ALL
FILTER

ALLSELECTED Function
Removes context filters from columns and rows in the current query, while retaining all
other context filters or explicit filters.
The ALLSELECTED function gets the context that represents all rows and columns in the
query, while keeping explicit filters and contexts other than row and column filters. This
function can be used to obtain visual totals in queries.
Syntax
ALLSELECTED([<tableName> | <columnName>])
Parameters

Parameter Description

 The name of an existing table,

 119

using standard DAX syntax. This
parameter cannot be an
expression. This parameter is
optional.

 The name of an existing column
using standard DAX syntax, usually
fully qualified. It cannot be an
expression. This parameter is
optional.

Return Value
The context of the query without any column and row filters.
Exceptions

Remarks
• This function takes one or no arguments. If there is one argument, the argument is

either tableName or columnName.
• This function is different from ALL() because it retains all filters explicitly set within

the query, and it retains all context filters other than row and column filters.
Example
Description
The following example shows how to generate different levels of visual totals in a table
report using DAX expressions. In the report two (2) previous filters have been applied to
the Reseller Sales data; one on Sales Territory Group = Europe and the other on
Promotion Type = Volume Discount. Once filters have been applied, visual totals can be
calculated for the entire report, for All Years, or for All Product Categories. Also, for
illustration purposes the grand total for All Reseller Sales is obtained too, removing all
filters in the report. Evaluating the following DAX expression results in a table with all the
information needed to build a table with Visual Totals.
Code
define

measure 'Reseller Sales'[Reseller Sales Amount]=sum('Reseller

Sales'[Sales Amount])

measure 'Reseller Sales'[Reseller Grand Total]=calculate(sum('Reseller

Sales'[Sales Amount]), ALL('Reseller Sales'))

measure 'Reseller Sales'[Reseller Visual Total]=calculate(sum('Reseller

Sales'[Sales Amount]), ALLSELECTED())

 120

measure 'Reseller Sales'[Reseller Visual Total for All of Calendar

Year]=calculate(sum('Reseller Sales'[Sales Amount]),

ALLSELECTED('Date'[Calendar Year]))

measure 'Reseller Sales'[Reseller Visual Total for All of Product

Category Name]=calculate(sum('Reseller Sales'[Sales Amount]),

ALLSELECTED('Product Category'[Product Category Name]))

evaluate

CalculateTable(

 //CT table expression

 summarize(

//summarize table expression

crossjoin(distinct('Product Category'[Product Category Name]),

distinct('Date'[Calendar Year]))

//First Group by expression

, 'Product Category'[Product Category Name]

//Second Group by expression

, 'Date'[Calendar Year]

//Summary expressions

, "Reseller Sales Amount", [Reseller Sales Amount]

, "Reseller Grand Total", [Reseller Grand Total]

, "Reseller Visual Total", [Reseller Visual Total]

, "Reseller Visual Total for All of Calendar Year", [Reseller Visual

Total for All of Calendar Year]

, "Reseller Visual Total for All of Product Category Name", [Reseller

Visual Total for All of Product Category Name]

)

//CT filters

, 'Sales Territory'[Sales Territory Group]="Europe",

'Promotion'[Promotion Type]="Volume Discount"

)

order by [Product Category Name], [Calendar Year]

 121

Comments
After executing the above expression in SQL Server Management Studio against
AdventureWorks DW Tabular Model 2012 you obtain the following results:

[Product
Category
Name]

[Calend
ar Year]

[Reseller
Sales
Amount]

[Reseller Grand
Total]

[Reseller
Visual Total]

[Reseller
Visual Total
for All of
Calendar
Year]

[Reseller
Visual Total
for All of
Product
Category
Name]

Accessories 2000 80450596.98
23

877006.79
87

38786.018

Accessories 2001 80450596.98
23

877006.79
87

38786.018

Accessories 2002 625.7933 80450596.98
23

877006.79
87

38786.018 91495.310
4

Accessories 2003 26037.313
2

80450596.98
23

877006.79
87

38786.018 572927.01
36

Accessories 2004 12122.911
5

80450596.98
23

877006.79
87

38786.018 212584.47
47

Accessories 2005 80450596.98
23

877006.79
87

38786.018

Accessories 2006 80450596.98
23

877006.79
87

38786.018

Bikes 2000 80450596.98
23

877006.79
87

689287.79
39

Bikes 2001 80450596.98
23

877006.79
87

689287.79
39

Bikes 2002 73778.938 80450596.98
23

877006.79
87

689287.79
39

91495.310
4

Bikes 2003 439771.41
36

80450596.98
23

877006.79
87

689287.79
39

572927.01
36

Bikes 2004 175737.44
23

80450596.98
23

877006.79
87

689287.79
39

212584.47
47

Bikes 2005 80450596.98 877006.79 689287.79

 122

[Product
Category
Name]

[Calend
ar Year]

[Reseller
Sales
Amount]

[Reseller Grand
Total]

[Reseller
Visual Total]

[Reseller
Visual Total
for All of
Calendar
Year]

[Reseller
Visual Total
for All of
Product
Category
Name]

23 87 39

Bikes 2006 80450596.98
23

877006.79
87

689287.79
39

Clothing 2000 80450596.98
23

877006.79
87

95090.775
7

Clothing 2001 80450596.98
23

877006.79
87

95090.775
7

Clothing 2002 12132.433
4

80450596.98
23

877006.79
87

95090.775
7

91495.310
4

Clothing 2003 58234.221
4

80450596.98
23

877006.79
87

95090.775
7

572927.01
36

Clothing 2004 24724.120
9

80450596.98
23

877006.79
87

95090.775
7

212584.47
47

Clothing 2005 80450596.98
23

877006.79
87

95090.775
7

Clothing 2006 80450596.98
23

877006.79
87

95090.775
7

Componen
ts

2000 80450596.98
23

877006.79
87

53842.211
1

Componen
ts

2001 80450596.98
23

877006.79
87

53842.211
1

Componen
ts

2002 4958.1457 80450596.98
23

877006.79
87

53842.211
1

91495.310
4

Componen
ts

2003 48884.065
4

80450596.98
23

877006.79
87

53842.211
1

572927.01
36

Componen
ts

2004 80450596.98
23

877006.79
87

53842.211
1

212584.47
47

Componen
ts

2005 80450596.98
23

877006.79
87

53842.211
1

 123

[Product
Category
Name]

[Calend
ar Year]

[Reseller
Sales
Amount]

[Reseller Grand
Total]

[Reseller
Visual Total]

[Reseller
Visual Total
for All of
Calendar
Year]

[Reseller
Visual Total
for All of
Product
Category
Name]

Componen
ts

2006 80450596.98
23

877006.79
87

53842.211
1

The columns in the report are:
Reseller Sales Amount

The actual value of Reseller Sales for the year and product category. This value appears
in a cell in the center of your report, at the intersection of year and catergory.

Reseller Visual Total for All of Calendar Year

The total value for a product category across all years. This value appears at the end of a
column or row for a given product category and across all years in the report.

Reseller Visual Total for All of Product Category Name

The total value for a year across all product categories. This value appears at the end of
a column or row for a given year and across all product categories in the report.

Reseller Visual Total

The total value for all years and product categories. This value usually appears in the
bottom rightmost corner of the table.

Reseller Grand Total

This is the grand total for all reseller sales, before any filter has been applied; you should
notice the difference with [Reseller Visual Total]. You do remember that this report
includes two (2) filters, one on Product Category Group and the other in Promotion
Type.

Example
Description
The following example shows the usage of ALLSELECTED() with no arguments to show
how to calculate a ratio over the total value shown in a table that has been filtered by
using horizontal and vertical slicers. This example uses SQL Server 2012, PowerPivot for
Excel and PowerPivot Sample Data (DAX_AdventureWorks).
• In the PowerPivot field list, drag the column, ResellerSales[SalesAmount_USD], to the

Values area.
• Drag Promotion[PromotionType] to the Slicers Vertical area. Select the slicers for

Discontinued Product, Excess Inventory and Seasonal Discount.

http://powerpivotsampledata.codeplex.com/releases/view/35434�

 124

• Drag SalesTerritory[SalesTerritoryGroup] to the Slicers Horizontal area. Select the
slicer for Europe.

• The value of Sum Of SalesAmount_USD should be $19,614.37
• Drag ProductCategory[ProductCategoryName] to the Row Labels area and

DateTime[CalendarYear] to the Column Labels area.
Your table should look similar to:

 SalesTerritory
Group

 Europe North
America

 Pacific NA

Promotion
Type

Discontinue
d Product

 Sum of
SalesAmount
_USD

Colum
n
Labels

Excess
Inventory

 Row Labels 2006 2007 2008 Grand
Total

New
Product

 Accessories $1,111.
22

$3,414.
43

 $4,525.
66

No
Discount

 Bikes $8,834.
94

 $6,253.
78

$15,088
.72

Seasonal
Discount

 Grand Total $9,946
.16

$3,414
.43

$6,253
.78

$19,614
.37

Volume
Discount

• Using a hand calculator, verify that the amount $3,414.43 (for Accessories in 2007)

represents 17.41% of $19,614.37.
• Using a hand calculator, verify that the amount $6,253.78 (for Bikes in 2008)

represents 31.88% of $19,614.37.
• Using a hand calculator, verify that the amount $15,088.72 (for Bikes Grand Total)

represents 76.93% of $19,614.37.

 125

• Remove ResellerSales[SalesAmount_USD] from the Values area.
• Create a measure, named Reseller Sales Ratio, in the ResellerSales table, using the

following formula (format the result as percentage):
Code
=SUM(ResellerSales_USD[SalesAmount_USD])/

CALCULATE(SUM(ResellerSales_USD[SalesAmount_USD]), ALLSELECTED())

Comments
Your table should look like this:

 SalesTerritoryGroup

 Europe North
America

 Pacific NA

PromotionType

Discontinued
Product

 Reseller
Sales Ratio

Column
Labels

Excess Inventory Row
Labels

2006 2007 2008 Grand
Total

New Product Accessories 5.67 % 17.41
%

 23.07
%

No Discount Bikes 45.04 % 31.88
%

76.93
%

Seasonal
Discount

 Grand
Total

50.71 % 17.41
%

31.88
%

100.00
%

Volume
Discount

• Compare your handheld calculator results with those given by Reseller Sales Ratio

and they should match; your denominator value is fixed as the value at the bottom of
the table.

• Because the CALCULATE formula in the denominator uses the ALLSELECTED function,
the denominator represents the grand total of sales, at the bottom of the table, after
the vertical, horizontal and page slicers have been applied; but, before the row and
column slicers are applied .

 126

Note: if you have explicit filters in your expression, those filters are also applied to
the expression.

CALCULATE Function
Evaluates an expression in a context that is modified by the specified filters.
Syntax

CALCULATE(<expression>,<filter1>,<filter2>…)
Parameters

Term Definition

expression The expression to be evaluated.

filter1,filter2,… (optional) A comma separated list of
Boolean expression or a table expression
that defines a filter.

The expression used as the first parameter is essentially the same as a measure.
The following restrictions apply to Boolean expressions that are used as arguments:
• The expression cannot reference a measure.
• The expression cannot use a nested CALCULATE function.
• The expression cannot use any function that scans a table or returns a table,

including aggregation functions.
However, a Boolean expression can use any function that looks up a single value, or that
calculate a scalar value.
Return Value
The value that is the result of the expression.
Remarks
If the data has been filtered, the CALCULATE function changes the context in which the
data is filtered, and evaluates the expression in the new context that you specify. For
each column used in a filter argument, any existing filters on that column are removed,
and the filter used in the filter argument is applied instead.
Example
Description
To calculate the ratio of current reseller sales to all reseller sales, you add to the
PivotTable a measure that calculates the sum of sales for the current cell (the numerator),
and then divides that sum by the total sales for all resellers (the denominator). To ensure

 127

that the denominator remains the same regardless of how the PivotTable might be
filtering or grouping the data, the part of the formula that represents the denominator
must use the ALL function to clear any filters and create the correct total.
The following table shows the results when the new measure, named All Reseller Sales
Ratio, is created by using the formula in the code section.
To see how this works, add the field, CalendarYear, to the Row Labels area of the
PivotTable, and add the field, ProductCategoryName, to the Column Labels area. Then
add the new measure to the Values area of the PivotTable. To display the numbers as
percentages, apply percentage number formatting to the area of the PivotTable that
contains the new measure, All Reseller Sales Ratio.

All Reseller
Sales

Column Labels

Row Labels Accessories Bikes Clothing Components Grand Total

2005 0.02% 9.10% 0.04% 0.75% 9.91%

2006 0.11% 24.71% 0.60% 4.48% 29.90%

2007 0.36% 31.71% 1.07% 6.79% 39.93%

2008 0.20% 16.95% 0.48% 2.63% 20.26%

Grand
Total

0.70% 82.47% 2.18% 14.65% 100.00%

Code
=(SUM('ResellerSales_USD'[SalesAmount_USD]))

 /CALCULATE(SUM('ResellerSales_USD'[SalesAmount_USD])

 ,ALL('ResellerSales_USD'))

Comments
The CALCULATE expression in the denominator enables the sum expression to include all
rows in the calculation. This overrides the implicit filters for CalendarYear and
ProductCategoryName that exist for the numerator part of the expression.
Related Functions
Whereas the CALCULATE function requires as its first argument an expression that
returns a single value, the CALCULATETABLE function takes a table of values.
See Also
CALCULATETABLE Function
Filter and value functions

 128

CALCULATETABLE Function
Evaluates a table expression in a context modified by the given filters.
Syntax

CALCULATETABLE(<expression>,<filter1>,<filter2>,…)
Parameters

Term Definition

Expression The table expression to be evaluated

filter1,filter2,… A Boolean expression or a table expression
that defines a filter

The expression used as the first parameter must be a function that returns a table.
The following restrictions apply to Boolean expressions that are used as arguments:
• The expression cannot reference a measure.
• The expression cannot use a nested CALCULATE function.
• The expression cannot use any function that scans a table or returns a table,

including aggregation functions.
However, a Boolean expression can use any function that looks up a single value, or that
calculates a scalar value.
Return Value
A table of values.
Remarks
The CALCULATETABLE function changes the context in which the data is filtered, and
evaluates the expression in the new context that you specify. For each column used in a
filter argument, any existing filters on that column are removed, and the filter used in the
filter argument is applied instead.
This function is a synonym for the RELATEDTABLE function.
Example
Description
The following example uses the CALCULATETABLE function to get the sum of Internet
sales for 2006. This value is later used to calculate the ratio of Internet sales compared to
all sales for the year 2006.
The following table shows the results from the following formula.

 129

Row Labels Internet SalesAmount_USD CalculateTable 2006
Internet Sales

Internet Sales to
2006 ratio

2005 $2,627,031.40 $5,681,440.58 0.46

2006 $5,681,440.58 $5,681,440.58 1.00

2007 $8,705,066.67 $5,681,440.58 1.53

2008 $9,041,288.80 $5,681,440.58 1.59

Grand Total $26,054,827.45 $5,681,440.58 4.59

Code
=SUMX(CALCULATETABLE('InternetSales_USD',

'DateTime'[CalendarYear]=2006)

 , [SalesAmount_USD])

See Also
RELATEDTABLE Function (DAX)
Filter and value functions

DISTINCT Function
Returns a one-column table that contains the distinct values from the specified column.
In other words, duplicate values are removed and only unique values are returned.

This function cannot be used to return values into a cell or column on a
worksheet; rather, you nest the DISTINCT function within a formula, to get a list
of distinct values that can be passed to another function and then counted,
summed, or used for other operations.

Syntax

DISTINCT(<column>)
Parameters

Term Definition

column The column from which unique values are
to be returned. Or, an expression that
returns a column.

Note

 130

Return Value
A column of unique values.
Remarks
The results of DISTINCT are affected by the current filter context. For example, if you use
the formula in the following example to create a measure, the results would change
whenever the table was filtered to show only a particular region or a time period.
Related Functions
The VALUES function is similar to DISTINCT; it can also be used to return a list of unique
values, and generally will return exactly the same results as DISTINCT. However, in some
context VALUES will return one additional special value. For more information,
see VALUES Function (DAX).
Example
Description
The following formula counts the number of unique customers who have generated
orders over the internet channel. The table that follows illustrates the possible results
when the formula is added to a PivotTable.
Code
=COUNTROWS(DISTINCT(InternetSales_USD[CustomerKey]))

Comments
Note that you cannot paste the list of values that DISTINCT returns directly into a
column. Instead, you pass the results of the DISTINCT function to another function that
counts, filters, or aggregates values by using the list. To make the example as simple as
possible, here the table of distinct values has been passed to the COUNTROWS function.

Unique Internet
customers

Column Labels

Row Labels Accessories Bikes Clothing Grand Total

2005 1013 1013

2006 2677 2677

2007 6792 4875 2867 9309

2008 9435 5451 4196 11377

Grand Total 15114 9132 6852 18484

Also, note that the results are not additive. That is to say, the total number of unique
customers in 2007 is not the sum of unique customers of Accessories, Bikes and Clothing
for that year. The reason is that a customer can be counted in multiple groups.

 131

See Also
Filter and value functions
FILTER
RELATED
VALUES

EARLIER Function
Returns the current value of the specified column in an outer evaluation pass of the
mentioned column.
EARLIER is useful for nested calculations where you want to use a certain value as an
input and produce calculations based on that input. In Microsoft Excel, you can do such
calculations only within the context of the current row; however, in DAX you can store
the value of the input and then make calculation using data from the entire table.
EARLIER is mostly used in the context of calculated columns.
Syntax

EARLIER(<column>, <number>)
Parameters

Term Definition

column A column or expression that resolves to a
column.

num (Optional) A positive number to the outer
evaluation pass.
The next evaluation level out is represented
by 1; two levels out is represented by 2 and
so on.
When omitted default value is 1.

Property Value/Return Value
The current value of row, from column, at number of outer evaluation passes.
Exceptions
Description of errors
Remarks
EARLIER succeeds if there is a row context prior to the beginning of the table scan.
Otherwise it returns an error.

 132

The performance of EARLIER might be slow because it theoretically, it might have to
perform a number of operations that is close to the total number of rows (in the column)
times the same number (depending on the syntax of the expression). For example if you
have 10 rows in the column, approximately a 100 operations could be required; if you
have 100 rows then close to 10,000 operations might be performed.

In practice, the xVelocity in-memory analytics engine (VertiPaq) performs
optimizations to reduce the actual number of calculations, but you should be
cautious when creating formulas that involve recursion.

Example
Description
To illustrate the use of EARLIER, it is necessary to build a scenario that calculates a rank
value and then uses that rank value in other calculations.
The following example is based on this simple table, ProductSubcategory, which shows
the total sales for each ProductSubcategory.
The final table, including the ranking column is shown here.

ProductSubcategoryK
ey

EnglishProductSubcategoryNa
me

TotalSubcategorySal
es

SubcategoryRankin
g

18 Bib-Shorts $156,167.88 18

26 Bike Racks $220,720.70 14

27 Bike Stands $35,628.69 30

28 Bottles and Cages $59,342.43 24

5 Bottom Brackets $48,643.47 27

6 Brakes $62,113.16 23

19 Caps $47,934.54 28

7 Chains $8,847.08 35

29 Cleaners $16,882.62 32

8 Cranksets $191,522.09 15

9 Derailleurs $64,965.33 22

30 Fenders $41,974.10 29

10 Forks $74,727.66 21

20 Gloves $228,353.58 12

Note

 133

ProductSubcategoryK
ey

EnglishProductSubcategoryNa
me

TotalSubcategorySal
es

SubcategoryRankin
g

4 Handlebars $163,257.06 17

11 Headsets $57,659.99 25

31 Helmets $451,192.31 9

32 Hydration Packs $96,893.78 20

21 Jerseys $699,429.78 7

33 Lights 36

34 Locks $15,059.47 33

1 Mountain Bikes $34,305,864.29 2

12 Mountain Frames $4,511,170.68 4

35 Panniers 36

13 Pedals $140,422.20 19

36 Pumps $12,695.18 34

2 Road Bikes $40,551,696.34 1

14 Road Frames $3,636,398.71 5

15 Saddles $52,526.47 26

22 Shorts $385,707.80 10

23 Socks $28,337.85 31

24 Tights $189,179.37 16

37 Tires and Tubes $224,832.81 13

3 Touring Bikes $13,334,864.18 3

16 Touring Frames $1,545,344.02 6

25 Vests $240,990.04 11

17 Wheels $648,240.04 8

Creating a Rank Value
One way to obtain a rank value for a given value in a row is to count the number of rows,
in the same table, that have a value larger (or smaller) than the one that is being
compared. This technique returns a blank or zero value for the highest value in the table,

 134

whereas equal values will have the same rank value and next value (after the equal
values) will have a non consecutive rank value. See the sample below.
A new calculated column, SubCategorySalesRanking, is created by using the following
formula.
Code
= COUNTROWS(FILTER(ProductSubcategory,

EARLIER(ProductSubcategory[TotalSubcategorySales])<ProductSubcategory[T

otalSubcategorySales]))+1

Comments
The following steps describe the method of calculation in more detail.
1. The EARLIER function gets the value of TotalSubcategorySales for the current row in

the table. In this case, because the process is starting, it is the first row in the table
2. EARLIER([TotalSubcategorySales]) evaluates to $156,167.88, the current row in the

outer loop.
3. The FILTER function now returns a table where all rows have a value of

TotalSubcategorySales larger than $156,167.88 (which is the current value for
EARLIER).

4. The COUNTROWS function counts the rows of the filtered table and assigns that
value to the new calculated column in the current row plus 1. Adding 1 is needed to
prevent the top ranked value from become a Blank.

5. The calculated column formula moves to the next row and repeats steps 1 to 4. These
steps are repeated until the end of the table is reached.

The EARLIER function will always get the value of the column prior to the current table
operation. If you need to get a value from the loop before that, set the second argument
to 2.
See Also
EARLIESTfunction
Filter and value functions

EARLIEST Function
Returns the current value of the specified column in an outer evaluation pass of the
specified column.
Syntax

EARLIEST(<column>)
Parameters

 135

Term Definition

column A reference to a column.

Property Value/Return Value
A column with filters removed.
Remarks
The EARLIEST function is similar to EARLIER, but lets you specify one additional level of
recursion.
Example
Description
The current sample data does not support this scenario.
Code
=EARLIEST(<column>)

See Also
EARLIER function
Filter and value functions

FILTER Function
Returns a table that represents a subset of another table or expression.
Syntax

FILTER(<table>,<filter>)
Parameters

Term Definition

table The table to be filtered. The table can also
be an expression that results in a table.

filter A Boolean expression that is to be
evaluated for each row of the table. For
example, [Amount] > 0 or [Region] =
"France"

Return Value
A table containing only the filtered rows.

 136

Remarks
You can use FILTER to reduce the number of rows in the table that you are working with,
and use only specific data in calculations. FILTER is not used independently, but as a
function that is embedded in other functions that require a table as an argument.
Example
Description
The following example creates a report of Internet sales outside the United States by
using a measure that filters out sales in the United States, and then slicing by calendar
year and product categories. To create this measure, you filter the table, Internet Sales
USD, by using Sales Territory, and then use the filtered table in a SUMX function.
In this example, the expression FILTER('InternetSales_USD',
RELATED('SalesTerritory'[SalesTerritoryCountry])<>"United States")
returns a table that is a subset of Internet Sales minus all rows that belong to the United
States sales territory. The RELATED function is what links the Territory key in the Internet
Sales table to SalesTerritoryCountry in the SalesTerritory table.
The following table demonstrates the proof of concept for the measure, NON USA
Internet Sales, the formula for which is provided in the code section below. The table
compares all Internet sales with non- USA Internet sales, to show that the filter
expression works, by excluding United States sales from the computation.
To re-create this table, add the field, SalesTerritoryCountry, to the Row Labels area of
the PivotTable.
Table 1. Comparing total sales for U.S. vs. all other regions

Row Labels Internet Sales Non USA Internet Sales

Australia $4,999,021.84 $4,999,021.84

Canada $1,343,109.10 $1,343,109.10

France $2,490,944.57 $2,490,944.57

Germany $2,775,195.60 $2,775,195.60

United Kingdom $5,057,076.55 $5,057,076.55

United States $9,389,479.79

Grand Total $26,054,827.45 $16,665,347.67

The final report table shows the results when you create a PivotTable by using the
measure, NON USA Internet Sales. Add the field, CalendarYear, to the Row Labels area
of the PivotTable and add the field, ProductCategoryName, to the Column Labels area.
Table 2. Comparing non- U.S. sales by product categories

 137

Non USA
Internet Sales

Column Labels

Row Labels Accessories Bikes Clothing Grand Total

2005 $1,526,481.95 $1,526,481.95

2006 $3,554,744.04 $3,554,744.04

2007 $156,480.18 $5,640,106.05 $70,142.77 $5,866,729.00

2008 $228,159.45 $5,386,558.19 $102,675.04 $5,717,392.68

Grand Total $384,639.63 $16,107,890.23 $172,817.81 $16,665,347.67

Code
SUMX(FILTER('InternetSales_USD',

RELATED('SalesTerritory'[SalesTerritoryCountry])<>"United States")

 ,'InternetSales_USD'[SalesAmount_USD])

See Also
Filter and value functions
ALL
ALLEXCEPT

FILTERS Function
Returns the values that are directly applied as filters to columnName.
Syntax
FILTERS(<columnName>)
Parameters

Parameter Description

 The name of an existing column,
using standard DAX syntax. It
cannot be an expression.

Return Value
The values that are directly applied as filters to columnName.
Remarks

 138

Example
Description
The following example shows how to determine the number of direct filters a column
has.
Code
=COUNTROWS(FILTERS(ResellerSales_USD[ProductKey]))

Comments
The example above lets you know how many direct filters on
ResellerSales_USD[ProductKey] have been applied to the context where the expression is
being evaluated.

HASONEFILTER Function
Returns TRUE when the number of directly filtered values on columnName is one;
otherwise returns FALSE.
Syntax
HASONEFILTER(<columnName>)
Parameters

Parameter Description

 The name of an existing column,
using standard DAX syntax. It
cannot be an expression.

Return Value
TRUE when the number of directly filtered values on columnName is one; otherwise
returns FALSE.
Remarks
1. An equivalent expression for HASONEFILTER() is

COUNTROWS(FILTERS(<columnName>)) = 1.
2. This function is similar to HASONEVALUE() with the difference that HASONEVALUE()

works based on cross-filters while HASONEFILTER() works by a direct filter.
Example
Description
The following example shows how to use HASONEFILTER() to return the filter for
ResellerSales_USD[ProductKey]) if there is one filter, or to return BLANK if there are no
filters or more than one filter on ResellerSales_USD[ProductKey]).

 139

Code
=IF(HASONEFILTER(ResellerSales_USD[ProductKey]),FILTERS(ResellerSales_U

SD[ProductKey]),BLANK())

Comments

HASONEVALUE Function
Returns TRUE when the context for columnName has been filtered down to one distinct
value only. Otherwise is FALSE.
Syntax
HASONEVALUE(<columnName>)
Parameters

Parameter Description

 The name of an existing column,
using standard DAX syntax. It
cannot be an expression.

Return Value
TRUE when the context for columnName has been filtered down to one distinct value
only. Otherwise is FALSE.
Remarks
• An equivalent expression for HASONEVALUE() is

COUNTROWS(VALUES(<columnName>)) = 1.
Example
Description
In the following example you want to create a formula that verifies if the context is being
sliced by one value in order to estimate a percentage against a predefined scenario; in
this case you want to compare Reseller Sales against sales in 2007, then you need to
know if the context is filtered by single years. Also, if the comparison is meaningless you
want to return BLANK.
If you want to follow the scenario, you can download the spreadsheet with the model
from PowerPivot Sample Data spreadsheet.
Create a measure named [ResellerSales compared to 2007] using the following
expression:
Code

http://powerpivotsampledata.codeplex.com/releases/view/35434�

 140

=IF(HASONEVALUE(DateTime[CalendarYear]),SUM(ResellerSales_USD[SalesAmou

nt_USD])/CALCULATE(SUM(ResellerSales_USD[SalesAmount_USD]),DateTime[Cal

endarYear]=2007),BLANK())

Comments
1. After creating the measure you should have an empty result under [ResellerSales

compared to 2007], as shown below:

 ResellerSales compared to 2007

The BLANK cell in the result is because you don't have single year filters anywhere in
your context.

2. Drag DateTime[CalendarYear] to the Column Labels box; your table should look like
this:

 Column
Labels

 2005 2006 2007 2008

 ResellerSales
compared to 2007

 24.83 % 74.88 % 100.00 % 50.73 %

3. Drag ProductCategory[ProductCategoryName] to the Row Labels box to have

something like this:

 ResellerSales
compared to 2007

 Column
Labels

 Row Labels 2005 2006 2007 2008

Accessories 6.74 % 31.40 % 100.00 % 55.58 %

Bikes 28.69 % 77.92 % 100.00 % 53.46 %

Clothing 3.90 % 55.86 % 100.00 % 44.92 %

Components 11.05 % 65.99 % 100.00 % 38.65 %

 Grand Total 24.83 % 74.88 % 100.00 % 50.73 %

 141

Did you notice that Grand Totals appeared at the bottom of the columns but not for
the rows? This is because the context for Grand Totals on rows implies more than
one year; but for columns implies a single year.

4. Drag DateTime[CalendarYear] to the Horizontal Slicers box, and drag
SalesTerritory[SalesTerritoryGroup] to the Horizontal Labels box. You should have
an empty results set, because your table contains data for multiple years. Select 2006
in the slicer and your table should now have data again. Try other years to see how
the results change.

5. In summary, HASONEVALUE() allows you to identify if your expression is being
evaluated in the context of a single value for columnName.

ISCROSSFILTERED Function
Returns TRUE when columnName or another column in the same or related table is
being filtered.
Syntax
ISCROSSFILTERED(<columnName>)
Parameters

Parameter Description

 The name of an existing column,
using standard DAX syntax. It
cannot be an expression.

Return Value
TRUE when columnName or another column in the same or related table is being
filtered. Otherwise returns FALSE.
Remarks
• A column is said to be cross-filtered when a filter applied to another column in the

same table or in a related table affects columnName by filtering it. A column is said
to be filtered directly when the filter or filters apply over the column.

• The related function ISFILTERED Function (DAX) returns TRUE when columnName is
filtered directly.

Example
Description
The following example creates a measure and then presents different scenarios to
explain the behavior of ISCROSSFILTERED(). The scenarios can be followed by
downloading the DAX_AdventureWorks spreadsheet.
First, create the following measure [Is ProductName Cross Filtered] in the [Product] table.

http://powerpivotsampledata.codeplex.com/releases/view/35434�

 142

Code
=ISCROSSFILTERED(Product[ProductName])

Comments
Understanding ISCROSSFILTERED():
1. After you create the measure, the PivotTable should show that [Is ProductName

Cross Filtered] is FALSE, because the expression is not being filtered at all. Now, you
should have something like this:

Is ProductName Cross Filtered

FALSE

If nothing appears in the PivotTable, drag the column [Is ProductName Cross
Filtered] to the Values box.

2. Drag DateTime[CalendarYear] to the Column Labels box and drag
SalesTerritory[SalesTerritoryGroup] to the Row Labels box; all values should appear
as FALSE. Now, you should have something like this:

Is Product
Name
CrossFiltered

Column
Labels

Row Labels 2005 2006 2007 2008 Grand
Total

Europe FALSE FALSE FALSE FALSE FALSE FALSE

NA FALSE FALSE FALSE FALSE FALSE FALSE

North America FALSE FALSE FALSE FALSE FALSE FALSE

Pacific FALSE FALSE FALSE FALSE FALSE FALSE

 FALSE FALSE FALSE FALSE FALSE FALSE

Grand Total FALSE FALSE FALSE FALSE FALSE FALSE

You are seeing the value FALSE in all cells because neither DateTime[CalendarYear] or
SalesTerritory[SalesTerritoryGroup] have any filtering effect over
Product[ProductName].

3. Drag the column ProductCategory[ProductCategoryName] to the Slicers Horizontal
box and ProductSubCategory[ProductSubCategoryName] to the Slicers Vertical box.
All values should still appear as FALSE, because when you add a column to the slicers

 143

box you haven't yet selected a slicing set. Therefore, you should have something like
this:

 ProductCategory
Name

 Accessories Bikes

 Clothing Compon
ents

Is Product Name
CrossFiltered

ProductSubcategor
yName

Column
Labels

Bib-Shorts Row Labels 2005 200
6

200
7

200
8

 Gra
nd
Tota
l

Bike-Racks Europe FALSE FAL
SE

FAL
SE

FAL
SE

FAL
SE

FAL
SE

Bike-Stands NA FALSE FAL
SE

FAL
SE

FAL
SE

FAL
SE

FAL
SE

Bottles and Cages North America FALSE FAL
SE

FAL
SE

FAL
SE

FAL
SE

FAL
SE

Bottom Brackets Pacific FALSE FAL
SE

FAL
SE

FAL
SE

FAL
SE

FAL
SE

Brakes FALSE FAL
SE

FAL
SE

FAL
SE

FAL
SE

FAL
SE

Caps Grand Total FALSE FAL
SE

FAL
SE

FAL
SE

FAL
SE

FAL
SE

Chains

Cleaners

Cranksets

Derailleurs

Fenders

Forks

 144

Gloves

Handlebars

Headsets

4. Select any item in the slicers and your table will now turn all cells to TRUE because

you are now filtering the Product[ProductName] column through the related tables
ProductCategory and ProductSubcategory. Your results should look like this:

 ProductCategory
Name

 Accessories Bikes

 Clothing Compone
nts

Is Product Name
CrossFiltered

ProductSubcategory
Name

Column
Labels

Bib-Shorts Row Labels 2005 200
6

200
7

200
8

 Gran
d
Tota
l

Bike-Racks Europe TRUE TRU
E

TRU
E

TRU
E

TRU
E

TRU
E

Bike-Stands NA TRUE TRU
E

TRU
E

TRU
E

TRU
E

TRU
E

Bottles and Cages North America TRUE TRU
E

TRU
E

TRU
E

TRU
E

TRU
E

Bottom Brackets Pacific TRUE TRU
E

TRU
E

TRU
E

TRU
E

TRU
E

Brakes TRUE TRU
E

TRU
E

TRU
E

TRU
E

TRU
E

Caps Grand Total TRUE TRU
E

TRU
E

TRU
E

TRU
E

TRU
E

Chains

 145

Cleaners

Cranksets

Derailleurs

Fenders

Forks

Gloves

Handlebars

Headsets

5. You can now replace the slicers with Product[ProductName] and

Product[ModelName]. As long as you do not select any item on any slicer the
measure returns FALSE; however, when you select an item in the slicer, the measure
now returns TRUE because you are filtering Product[ProductName] by itself or by
selecting a Product[ModelName].

6. In conclusion, ISCROSSFILTERED() allows you to determine if columnName is being
filtered in the context where your DAX expression is being evaluated.

This example uses the DAX_AdventureWorks sample spreadsheet model.
See Also
ISFILTERED Function (DAX)
FILTERS Function (DAX)
HASONEFILTER Function (DAX)
HASONEVALUE Function (DAX)

ISFILTERED Function
Returns TRUE when columnName is being filtered directly. If there is no filter on the
column or if the filtering happens because a different column in the same table or in a
related table is being filtered then the function returns FALSE.
Syntax
ISFILTERED(<columnName>)
Parameters

Parameter Description

 The name of an existing column,
using standard DAX syntax. It

http://powerpivotsampledata.codeplex.com/releases/view/35434�

 146

cannot be an expression.

Return Value
TRUE when columnName is being filtered directly.
Remarks
• columnName is said to be filtered directly when the filter or filters apply over the

column; a column is said to be cross-filtered when a filter applied to another column
in the same table or in a related table affects columnName the column by filtering it
as well.

• The related function ISCROSSFILTERED Function (DAX) returns TRUE when
columnName or another column in the same or related table is being filtered.

Example
Description
The following example creates a measure and then presents different scenarios to
explain the behavior of ISFILTERED(). The scenarios can be followed by downloading
the Data Analysis Expressions (DAX) Sample Data spreadsheet.
First, create the following measure [Is ProductName Filtered directly] in the [Product]
table.
Code
=ISFILTERED(Product[ProductName])

Comments
Understanding ISFILTERED():
1. After you create the measure, the pivot table should show that [Is ProductName

Filtered directly] is FALSE, because the expression is not being filtered at all. Now,
you should have something like this:

Is ProductName Filtered directly

FALSE

If nothing appears in the pivot table, drag [Is ProductName Filtered directly] to the
Values box.

2. Drag ProductCategory[ProductCategoryName] to the Row Labels box; all values
should still be FALSE and your table should look something like this:

Row Labels Is ProductName Filtered directly

Accessories FALSE

http://powerpivotsampledata.codeplex.com/releases/view/35434�

 147

Bikes FALSE

Clothing FALSE

Components FALSE

 FALSE

Grand Total FALSE

The reason the table contains values of FALSE is because
ProductCategory[ProductCategoryName] filters indirectly or cross-filters
Product[ProductName], but is not a direct filter on the column.

3. Drag Product[Status] to the Column Labels box; all values should still be FALSE and
your table should look something like this:

 Is ProductName
Filtered directly

 Column
Labels

 Row Labels Current Grand Total

Accessories FALSE FALSE FALSE

Bikes FALSE FALSE FALSE

Clothing FALSE FALSE FALSE

Components FALSE FALSE FALSE

 FALSE FALSE FALSE

 Grand Total FALSE FALSE FALSE

The table still has many values of FALSE because Product[Status] doesn't filter
Product[Name] directly.

4. The last step in this process is to drag Product[Name] to the Report Filter box. At
this point nothing should have changed; however, once you select a product name,
the table values should change to TRUE. Depending on the product you selected
your table should look like this:

ProductName Mountain-400-W Silver, 38

 Is ProductName Column Labels

 148

Filtered directly

 Row Labels Current Grand Total

Accessories TRUE TRUE

Bikes TRUE TRUE

Clothing TRUE TRUE

Components TRUE TRUE

 TRUE TRUE

 Grand Total TRUE TRUE

5. In conclusion, ISFILTERED() allows you to determine if columnName is being filtered

directly in the context where your expression is being evaluated.
This example uses the DAX_AdventureWorks sample spreadsheet model
See Also
ISCROSSFILTERED Function (DAX)
FILTERS Function (DAX)
HASONEFILTER Function (DAX)
HASONEVALUE Function (DAX)

KEEPFILTERS Function
Modifies how filters are applied while evaluating a CALCULATE or CALCULATETABLE
function.
Syntax

KEEPFILTERS(<expression>)
Parameters

Term Definition

expression Any expression.

Return Value
No return value.
Remarks

http://powerpivotsampledata.codeplex.com/releases/view/35434�

 149

You use KEEPFILTERS within the context CALCULATE and CALCULATETABLE functions, to
override the standard behavior of those functions.
By default, filter arguments s in functions such as CALCULATE are used as the context for
evaluating the expression, and as such filter arguments for CALCULATE replace all
existing filters over the same columns. The new context effected by the filter argument
for CALCULATE affects only existing filters on columns mentioned as part of the filter
argument. Filters on columns other than those mentioned in the arguments of
CALCULATE or other related functions remain in effect and unaltered.
The KEEPFILTERS function allows you to modify this behavior. When you use
KEEPFILTERS, any existing filters in the current context are compared with the columns in
the filter arguments, and the intersection of those arguments is used as the context for
evaluating the expression. The net effect over any one column is that both sets of
arguments apply: both the filter arguments used in CALCULATE and the filters in the
arguments of the KEEPFILTER function. In other words, whereas CALCULATE filters
replace the current context, KEEPFILTERS adds filters to the current context.
Example
Description
The following example takes you through some common scenarios that demonstrate use
of the KEEPFILTERS function as part of a CALCULATE or CALCULATETABLE formula.
The first three expressions obtain simple data to be used for comparisons:
• Internet Sales for the state of Washington.
• Internet Sales for the states of Washington and Oregon (both states combined).
• Internet Sales for the state of Washington and the province of British Columbia (both

regions combined).
The fourth expression calculates Internet Sales for Washington and Oregon, while the
filter for Washington and British Columbia is applied.
The next expression calculates Internet Sales for Washington and Oregon but uses
KEEPFILTERS; the filter for Washington and British Columbia is part of the prior context.
Code

EVALUATE ROW(

 "$$ in WA"

 , CALCULATE('Internet Sales'[Internet Total Sales]

 , 'Geography'[State Province Code]="WA"

)

, "$$ in WA and OR"

 , CALCULATE('Internet Sales'[Internet Total Sales]

 , 'Geography'[State Province Code]="WA"

 150

 || 'Geography'[State Province Code]="OR"

)

, "$$ in WA and BC"

 , CALCULATE('Internet Sales'[Internet Total Sales]

 , 'Geography'[State Province Code]="WA"

 || 'Geography'[State Province Code]="BC"

)

, "$$ in WA and OR ??"

 , CALCULATE(

 CALCULATE('Internet Sales'[Internet Total Sales]

 ,'Geography'[State Province Code]="WA"

 || 'Geography'[State Province Code]="OR"

)

 , 'Geography'[State Province Code]="WA"

 || 'Geography'[State Province Code]="BC"

)

, "$$ in WA !!"

 , CALCULATE(

 CALCULATE('Internet Sales'[Internet Total Sales]

 , KEEPFILTERS('Geography'[State Province Code]="WA"

 || 'Geography'[State Province Code]="OR"

)

)

 , 'Geography'[State Province Code]="WA"

 || 'Geography'[State Province Code]="BC"

)

)

Comments
When this expression is evaluated against the sample database AdventureWorks DW
Tabular 2012, the following results are obtained.

 151

Column Value

[$$ in WA] $ 2,467,248.34

[$$ in WA and OR] $ 3,638,239.88

[$$ in WA and BC] $ 4,422,588.44

[$$ in WA and OR ??] $ 3,638,239.88

[$$ in WA !!] $ 2,467,248.34

The above results were formatted to a table, instead of a single row, for
educational purposes.

First, examine the expression, [$$ in WA and OR ??]. You might wonder how this
formula could return the value for sales in Washington and Oregon, since the outer
CALCULATE expression includes a filter for Washington and British Columbia. The answer
is that the default behavior of CALCULATE overrides the outer filters in 'Geography'[State
Province Code] and substitutes its own filter arguments, because the filters apply to the
same column.
Next, examine the expression, [$$ in WA !!]. You might wonder how this formula could
return the value for sales in Washington and nothing else, since the argument filter
includes Oregon and the outer CALCULATE expression includes a filter in Washington
and British Columbia. The answer is that KEEPFILTERS modifies the default behavior of
CALCULATE and adds an additional filter. Because the intersection of filters is used, now
the outer filter 'Geography'[State Province Code]="WA" || 'Geography'[State
Province Code]="BC") is added to the filter argument 'Geography'[State Province
Code]="WA" || 'Geography'[State Province Code]="OR",. Because both filters apply
to the same column, the resulting filter 'Geography'[State Province Code]="WA" is
the filter that is applied when evaluating the expression.
See Also
Filter and value functions
CALCULATE
CALCULATETABLE

RELATED Function
Returns a related value from another table.
Syntax

RELATED(<column>)

Note

 152

Parameters

Term Definition

column The column that contains the values you
want to retrieve.

Return Value
A single value that is related to the current row.
Remarks
The RELATED function requires that a relationship exists between the current table and
the table with related information. You specify the column that contains the data that
you want, and the function follows an existing many-to-one relationship to fetch the
value from the specified column in the related table.
If a relationship does not exist, you must create a relationship. For more information,
see Creating a Relationship.
When the RELATED function performs a lookup, it examines all values in the specified
table regardless of any filters that may have been applied.

The RELATED function needs a row context; therefore, it can only be used in
calculated column expression, where the current row context is unambiguous, or
as a nested function in an expression that uses a table scanning function. A table
scanning function, such as SUMX, gets the value of the current row value and
then scans another table for instances of that value.

Example
Description
In the following example, the measure Non USA Internet Sales is created to produce a
sales report that excludes sales in the United States. In order to create the measure, the
InternetSales_USD table must be filtered to exclude all sales that belong to the United
States in the SalesTerritory table. The United States, as a country, appears 5 times in the
SalesTerritory table; once for each of the following regions: Northwest, Northeast,
Central, Southwest, and Southeast.
The first approach to filter the Internet Sales, in order to create the measure, could be to
add a filter expression like the following:
FILTER('InternetSales_USD', 'InternetSales_USD'[SalesTerritoryKey]<>1

&& 'InternetSales_USD'[SalesTerritoryKey]<>2 &&
'InternetSales_USD'[SalesTerritoryKey]<>3 &&
'InternetSales_USD'[SalesTerritoryKey]<>4 &&
'InternetSales_USD'[SalesTerritoryKey]<>5)

Note

http://msdn.microsoft.com/en-us/library/1e16118b-d65b-4e04-b6d9-2afb1e3b234b(SQL.110)�

 153

However, this approach is counterintuitive, prone to typing errors, and might not work if
any of the existing regions is split in the future.
A better approach would be to use the existing relationship between InternetSales_USD
and SalesTerritory and explicitly state that the country must be different from the United
States. To do so, create a filter expression like the following:
FILTER('InternetSales_USD',
RELATED('SalesTerritory'[SalesTerritoryCountry])<>"United States")
This expression uses the RELATED function to lookup the country value in the
SalesTerritory table, starting with the value of the key column, SalesTerritoryKey, in the
InternetSales_USD table. The result of the lookup is used by the filter function to
determine if the InternetSales_USD row is filtered or not.

If the example does not work, you might need to create a relationship between
the tables. For more information, see Relationships Between Tables.

Code
= SUMX(FILTER('InternetSales_USD'

 , RELATED('SalesTerritory'[SalesTerritoryCountry])

 <>"United States"

)

 ,'InternetSales_USD'[SalesAmount_USD])

Comments
The following table shows only totals for each region, to prove that the filter expression
in the measure, Non USA Internet Sales, works as intended.

Row Labels Internet Sales Non USA Internet Sales

Australia $4,999,021.84 $4,999,021.84

Canada $1,343,109.10 $1,343,109.10

France $2,490,944.57 $2,490,944.57

Germany $2,775,195.60 $2,775,195.60

United Kingdom $5,057,076.55 $5,057,076.55

United States $9,389,479.79

Grand Total $26,054,827.45 $16,665,347.67

The following table shows the final report that you might get if you used this measure in
a PivotTable:

Note

http://msdn.microsoft.com/en-us/library/b5b943df-fd57-4bbb-a152-8fa913502817(SQL.110)�

 154

Non USA
Internet Sales

Column Labels

Row Labels Accessories Bikes Clothing Grand Total

2005 $1,526,481.95 $1,526,481.95

2006 $3,554,744.04 $3,554,744.04

2007 $156,480.18 $5,640,106.05 $70,142.77 $5,866,729.00

2008 $228,159.45 $5,386,558.19 $102,675.04 $5,717,392.68

Grand Total $384,639.63 $16,107,890.23 $172,817.81 $16,665,347.67

See Also
RELATEDTABLE
Filter and value functions
Relationships between tables

RELATEDTABLE Function
Evaluates a table expression in a context modified by the given filters.
Syntax

RELATEDTABLE(<tableName>)
Parameters

Term Definition

tableName The name of an existing table using
standard DAX syntax. It cannot be an
expression.

Return Value
A table of values.
Remarks
The RELATEDTETABLE function changes the context in which the data is filtered, and
evaluates the expression in the new context that you specify.
This function is a shortcut for CALCULATETABLE function with no logical expression.

http://msdn.microsoft.com/en-us/library/b5b943df-fd57-4bbb-a152-8fa913502817(SQL.110)�

 155

Example
Description
The following example uses the RELATEDTABLE function to create a calculated column
with the Internet Sales in the Product Category table.
The following table shows the results of using the code shown here.

Product Category
Key

Product Category
AlternateKey

Product Category
Name

Internet Sales

1 1 Bikes $28,318,144.65

2 2 Components

3 3 Clothing $339,772.61

4 4 Accessories $700,759.96

Code
= SUMX(RELATEDTABLE('InternetSales_USD')

 , [SalesAmount_USD])

See Also
CALCULATETABLE Function (DAX)
Filter and value functions
Relationships between tables

USERELATIONSHIP Function
Specifies the relationship to be used in a specific calculation as the one that exists
between columnName1 and columnName2.
Syntax
USERELATIONSHIP(<columnName1>,<columnName2>)
Parameters

Parameter Description

 The name of an existing column,
using standard DAX syntax and
fully qualified, that usually
represents the many side of the
relationship to be used; if the
arguments are given in reverse

http://msdn.microsoft.com/en-us/library/b5b943df-fd57-4bbb-a152-8fa913502817(SQL.110)�

 156

order the function will swap them
before using them. This argument
cannot be an expression.

 The name of an existing column,
using standard DAX syntax and
fully qualified, that usually
represents the one side or lookup
side of the relationship to be used;
if the arguments are given in
reverse order the function will
swap them before using them. This
argument cannot be an expression.

Return Value
The function returns no value; the function only enables the indicated relationship for the
duration of the calculation.
Remarks
1. USERELATIONSHIP can only be used in functions that take a filter as an argument,

for example: CALCULATE, CALCULATETABLE, CLOSINGBALANCEMONTH,
CLOSINGBALANCEQUARTER, CLOSINGBALANCEYEAR,
OPENINGBALANCEMONTH, OPENINGBALANCEQUARTER,
OPENINGBALANCEYEAR, TOTALMTD, TOTALQTD and TOTALYTD functions.

2. USERELATIONSHIP uses existing relationships in the model, identifying relationships
by their ending point columns.

3. In USERELATIONSHIP, the status of a relationship is not important; that is, whether
the relationship is active or not does not affect the usage of the function. Even if the
relationship is inactive, it will be used and overrides any other active relationships
that might be present in the model but not mentioned in the function arguments.

4. An error is returned if any of the columns named as an argument is not part of a
relationship or the arguments belong to different relationships.

5. If multiple relationships are needed to join table A to table B in a calculation, each
relationship must be indicated in a different USERELATIONSHIP function.

6. If CALCULATE expressions are nested, and more than one CALCULATE expression
contains a USERELATIONSHIP function, then the innermost USERELATIONSHIP is the
one that prevails in case of a conflict or ambiguity.

7. Up to 10 USERELATIONSHIP functions can be nested; however, your expression
might have a deeper level of nesting, ie. the following sample expression is nested 3
levels deep but only 2 for USEREALTIONSHIP: =CALCULATE(CALCULATE(
CALCULATE(<anyExpression>, USERELATIONSHIP(t1[colA], t2[colB])),
t99[colZ]=999), USERELATIONSHIP(t1[colA], t2[colA])).

 157

Example
Description
The following sample shows how to override the default, active, relationship between
InternetSales and DateTime tables. The default relationship exists between the
OrderDate column, in the InternetSales table, and the Date column, in the DateTime
table.
To calculate the sum of internet sales and allow slicing by ShippingDate instead of the
traditional OrderDate you need to create a measure, [InternetSales by ShippingDate]
using the following expression:
Code
=CALCULATE(SUM(InternetSales[SalesAmount]),

USERELATIONSHIP(InternetSales[ShippingDate], DateTime[Date]))

Comments
In PowerPivot: drag your new measure to the Values area in the right pane, drag the
InternetSales[ShippingDate] column to the Row Labels area; you now have Internet
Sales sliced by shipping date instead of by order date as is usually shown in these
examples.
For this example to work the relationships between InternetSales[ShipmentDate] and
DateTime[Date] must exist and should not be the active relationship; also, the
relationship between InternetSales[OrderDate] and DateTime[Date] should exist and
should be the active relationship.

VALUES Function
Returns a one-column table that contains the distinct values from the specified column.
In other words, duplicate values are removed and only unique values are returned.

This function cannot be used to return values into a cell or column on a
worksheet; rather, you use it as an intermediate function, nested in a formula, to
get a list of distinct values that can be counted, or used to filter or sum other
values.

Syntax

VALUES(<column>)
Parameters

Term Definition

column The column from which unique values are

Note

 158

Term Definition

to be returned.

Return Value
A column of unique values.
Remarks
When you use the VALUES function in a context that has been filtered, such as in a
PivotTable, the unique values returned by VALUES are affected by the filter. For example,
if you filter by Region, and return a list of the values for City, the list will include only
those cities in the regions permitted by the filter. To return all of the cities, regardless of
existing filters, you must use the ALL function to remove filters from the table. The
second example demonstrates use of ALL with VALUES.
Related Functions
In most scenarios, the results of the VALUES function are identical to those of the
DISTINCT function. Both functions remove duplicates and return a list of the possible
values in the specified column. However, the VALUES function can also return an
Unknown member. This unknown value is useful in cases where you are looking up
distinct values from a related table, but a value used in the relationship is missing from
one table. In database terminology, this is termed a violation of referential integrity. Such
mismatches in data can easily occur when one table is being updated and the related
table is not.
The following table summarizes the mismatch between data that can occur in two
related tables when referential integrity is not preserved.

MyOrders table MySales table

June 1 June 1 sales

June 2 June 2 sales

(no order dates have been entered) June 3 sales

If you used the DISTINCT function to return a list of dates from the PivotTable containing
these tables, only two dates would be returned. However, if you use the VALUES
function, the function returns the two dates plus an additional blank member. Also, any
row from the MySales table that does not have a matching date in the MyOrders table
will be "matched" to this unknown member.
Example
Description

 159

The following formula counts the number of unique invoices (sales orders), and produces
the following results when used in a report that includes the Product Category Names:

Row Labels Count Invoices

Accessories 18,208

Bikes 15,205

Clothing 7,461

Grand Total 27,659

Code
=COUNTROWS(VALUES('InternetSales_USD'[SalesOrderNumber]))

See Also
FILTER
COUNTROWS
Filter and value functions

Information Functions
An information function looks at the cell or row that is provided as an argument and tells
you whether the value matches the expected type. For example, the ISERROR function
returns TRUE if the value that you reference contains an error.

In this Section
CONTAINS Function
ISBLANK Function
ISERROR Function
ISLOGICAL Function
ISNONTEXT Function
ISNUMBER Function
ISTEXT Function
LOOKUPVALUE Function
PATH Function
PATHCONTAINS Function
PATHITEM Function
PATHITEMREVERSE Function
PATHLENGTH Function

 160

See Also
Function Reference (DAX)

CONTAINS Function
Returns true if values for all referred columns exist, or are contained, in those columns;
otherwise, the function returns false.
Syntax
CONTAINS(<table>, <columnName>, <value>[, <columnName>, <value>]…)
Parameters

Parameter Description

 Any DAX expression that returns a
table of data.

 The name of an existing column,
using standard DAX syntax. It
cannot be an expression.

 Any DAX expression that returns a
single scalar value, that is to be
sought in columnName. The
expression is to be evaluated
exactly once and before it is
passed to the argument list.

Return Value
A value of TRUE if each specified value can be found in the corresponding columnName,
or are contained, in those columns; otherwise, the function returns FALSE.
Remarks
• The arguments columnName and value must come in pairs; otherwise an error is

returned.
• columnName must belong to the specified table, or to a table that is related to table.
• If columnName refers to a column in a related table then it must be fully qualified;

otherwise, an error is returned.
Example
Description
The following example creates a calculated measure that tells you whether there were
any Internet sales of the product 214 and to customer 11185 at the same time.
Code

 161

=CONTAINS(InternetSales, [ProductKey], 214, [CustomerKey], 11185)

Comments

CUSTOMDATA Function
Returns the content of the CustomData property in the connection string.
Syntax
CUSTOMDATA()
Return Value
The content of the CustomData property in the connection string.
Blank, if CustomData property was not defined at connection time.
Exceptions

Remarks

Example
Description
The following DAX code verifies if the CustomData property was set to "OK".
Code
=IF(CUSTOMDATA()="OK", "Correct Custom data in connection string", "No

custom data in connection string property or unexpected value")

Comments

ISBLANK Function
Checks whether a value is blank, and returns TRUE or FALSE.
Syntax

ISBLANK(<value>)
Parameters

Term Definition

value The value or expression you want to test.

 162

Return Value
A Boolean value of TRUE if the value is blank; otherwise FALSE.
Example
Description
This formula computes the increase or decrease ratio in sales compared to the previous
year. The example uses the IF function to check the value for the previous year's sales in
order to avoid a divide by zero error.

Row Labels Total Sales Total Sales Previous Year Sales to Previous
Year Ratio

2005 $10,209,985.08

2006 $28,553,348.43 $10,209,985.08 179.66%

2007 $39,248,847.52 $28,553,348.43 37.46%

2008 $24,542,444.68 $39,248,847.52 -37.47%

Grand Total $102,554,625.71

Code
//Sales to Previous Year Ratio

=IF(ISBLANK('CalculatedMeasures'[PreviousYearTotalSales])

 , BLANK()

 , ('CalculatedMeasures'[Total Sales]-

'CalculatedMeasures'[PreviousYearTotalSales])

 /'CalculatedMeasures'[PreviousYearTotalSales])

See Also
Information functions (DAX)

ISERROR Function
Checks whether a value is an error, and returns TRUE or FALSE.
Syntax

ISERROR(<value>)
Parameters

 163

Term Definition

value The value you want to test.

Return Value
A Boolean value of TRUE if the value is an error; otherwise FALSE.
Example
Description
The following example calculates the ratio of total Internet sales to total reseller sales.
The ISERROR function is used to check for errors, such as division by zero. If there is an
error a blank is returned, otherwise the ratio is returned.
Code
= IF(ISERROR(

 SUM('ResellerSales_USD'[SalesAmount_USD])

 /SUM('InternetSales_USD'[SalesAmount_USD])

)

 , BLANK()

 , SUM('ResellerSales_USD'[SalesAmount_USD])

 /SUM('InternetSales_USD'[SalesAmount_USD])

)

See Also
Information functions (DAX)
IFERROR
IF

ISLOGICAL Function
Checks whether a value is a logical value, (TRUE or FALSE), and returns TRUE or FALSE.
Syntax

ISLOGICAL(<value>)
Parameters

Term Definition

value The value that you want to test.

 164

Property Value/Return Value
TRUE if the value is a logical value; FALSE if any value other than TRUE OR FALSE.
Example
Description
The following three samples show the behavior of ISLOGICAL.
Code
//RETURNS: Is Boolean type or Logical

=IF(ISLOGICAL(true), "Is Boolean type or Logical", "Is different type")

//RETURNS: Is Boolean type or Logical

=IF(ISLOGICAL(false), "Is Boolean type or Logical", "Is different

type")

//RETURNS: Is different type

=IF(ISLOGICAL(25), "Is Boolean type or Logical", "Is different type")

See Also
Information functions (DAX)

ISNONTEXT Function
Checks if a value is not text (blank cells are not text), and returns TRUE or FALSE.
Syntax

ISNONTEXT(<value>)
Parameters

Term Definition

value The value you want to check.

Return Value
TRUE if the value is not text or blank; FALSE if the value is text.
Remarks
An empty string is considered text.
Example

 165

Description
The following examples show the behavior of the ISNONTEXT function.
Code
//RETURNS: Is Non-Text

=IF(ISNONTEXT(1), "Is Non-Text", "Is Text")

//RETURNS: Is Non-Text

=IF(ISNONTEXT(BLANK()), "Is Non-Text", "Is Text")

//RETURNS: Is Text

=IF(ISNONTEXT(""), "Is Non-Text", "Is Text")

See Also
Information functions (DAX)

ISNUMBER Function
Checks whether a value is a number, and returns TRUE or FALSE.
Syntax

ISNUMBER(<value>)
Parameters

Term Definition

value The value you want to test.

Property Value/Return Value
TRUE if the value is numeric; otherwise FALSE.
Example
Description
The following three samples show the behavior of ISNUMBER.
Code
//RETURNS: Is number

=IF(ISNUMBER(0), "Is number", "Is Not number")

 166

//RETURNS: Is number

=IF(ISNUMBER(3.1E-1),"Is number", "Is Not number")

//RETURNS: Is Not number

=IF(ISNUMBER("123"), "Is number", "Is Not number")

Comments
See Also
Information functions

ISTEXT Function
Checks if a value is text, and returns TRUE or FALSE.
Syntax

ISTEXT(<value>)
Parameters

Term Definition

value The value you want to check.

Property Value/Return Value
TRUE if the value is text; otherwise FALSE
Example
Description
The following examples show the behavior of the ISTEXT function.
Code
//RETURNS: Is Text

=IF(ISTEXT("text"), "Is Text", "Is Non-Text")

//RETURNS: Is Text

=IF(ISTEXT(""), "Is Text", "Is Non-Text")

//RETURNS: Is Non-Text

=IF(ISTEXT(1), "Is Text", "Is Non-Text")

 167

//RETURNS: Is Non-Text

=IF(ISTEXT(BLANK()), "Is Text", "Is Non-Text")

See Also
Information functions (DAX)

LOOKUPVALUE Function
Returns the value in result_columnName for the row that meets all criteria specified by
search_columnName and search_value.
Syntax
LOOKUPVALUE(<result_columnName>, <search_columnName>, <search_value>[,
<search_columnName>, <search_value>]…)
Parameters

Parameter Description

 The name of an existing column
that contains the value you want to
return. The column must be named
using standard DAX syntax, usually,
fully qualified. It cannot be an
expression.

 The name of an existing column, in
the same table as
result_columnName or in a related
table, over which the look-up is
performed. The column must be
named using standard DAX syntax,
usually, fully qualified. It cannot be
an expression.

 A scalar expression that does not
refer to any column in the same
table being searched.

Return Value
The value of result_column at the row where all pairs of search_column and search_value
have a match.
If there is no match that satisfies all the search values, a BLANK is returned. In other
words, the function will not return a lookup value if only some of the criteria match.

 168

If multiple rows match the search values and in all cases result_column values are
identical then that value is returned. However, if result_column returns different values an
error is returned.
Remarks

Example
Description
The following example returns the SafetyStocklLevel for the bike model "Mountain-400-
W Silver, 46".
Code
=LOOKUPVALUE(Product[SafetyStockLevel], [ProductName], " Mountain-400-W

Silver, 46")

Comments

PATH Function
Returns a delimited text string with the identifiers of all the parents of the current
identifier, starting with the oldest and continuing until current.
Syntax
PATH(<ID_columnName>, <parent_columnName>)
Parameters

Parameter Description

 The name of an existing column
containing the unique identifier for
rows in the table. This cannot be an
expression. The data type of the
value in ID_columnName must be
text or integer, and must also be
the same data type as the column
referenced in parent_columnName.

 The name of an existing column
containing the unique identifier for
the parent of the current row. This
cannot be an expression. The data
type of the value in
parent_columnName data type
must be text or integer, and must

 169

be the same data type as the value
in ID_columnName.

Return Value
A delimited text string containing the identifiers of all the parents to the current
identifier.
Remarks
This function is used in tables that have some kind of internal hierarchy, to return the
items that are related to the current row value. For example, in an Employees table that
contains employees, the managers of employees, and the managers of the managers,
you can return the path that connects an employee to his or her manager.
The path is not constrained to a single level of parent-child relationships; it can return
related rows that are several levels up from the specified starting row.
The delimiter used to separate the ascendants is the vertical bar, '|'.
The values in ID_columnName and parent_columnName must have the same data type,

text or integer.
Values in parent_columnName must be present in ID_columnName. That is, you cannot

look up a parent if there is no value at the child level.
If parent_columnName is BLANK then PATH() returns ID_columnName value. In other

words, if you look for the manager of an employee but the parent_columnName
column has no data, the PATH function returns just the employee ID.

If ID_columnName has duplicates and parent_columnName is the same for those
duplicates then PATH() returns the common parent_columnName value; however, if
parent_columnName value is different for those duplicates then PATH() returns an
error. In other words, if you have two listings for the same employee ID and they
have the same manager ID, the PATH function returns the ID for that manager.
However, if there are two identical employee IDs that have different manager IDs, the
PATH function returns an error.

If ID_columnName is BLANK then PATH() returns BLANK.
If ID_columnName contains a vertical bar '|' then PATH() returns an error.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following example creates a calculated column that lists all the managers for each
employee.
Code

http://go.microsoft.com/fwlink/?LinkId=219172�

 170

=PATH(Employee[EmployeeKey], Employee[ParentEmployeeKey])

Comments

PATHCONTAINS Function
Returns TRUE if the specified item exists within the specified path.
Syntax
PATHCONTAINS(<path>, <item>)
Parameters

Parameter Description

 A string created as the result of
evaluating a PATH function.

 A text expression to look for in the
path result.

Return Value
A value of TRUE if item exists in path; otherwise FALSE.
Remarks
If item is an integer number it is converted to text and then the function is evaluated. If
conversion fails then the function returns an error.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following example creates a calculated column that takes a manager ID and checks a
set of employees. If the manager ID is among the list of managers returned by the PATH
function, the PATHCONTAINS function returns true; otherwise it returns false.
Code
=PATHCONTAINS(PATH(Employee[EmployeeKey], Employee[ParentEmployeeKey]),

"23")

Comments

http://go.microsoft.com/fwlink/?LinkId=219172�

 171

PATHITEM Function
Returns the item at the specified position from a string resulting from evaluation of a
PATH function. Positions are counted from left to right.
Syntax
PATHITEM(<path>, <position>[, <type>])
Parameters

Parameter Description

 A text string in the form of the results
of a PATH function.

 An integer expression with the
position of the item to be returned.

 (Optional)An enumeration that
defines the data type of the result:

Enumeration Alternate
Enumeration

Description

TEXT 0 Results are
returned
with the
data type
text.
(default).

INTEGER 1 Results are
returned as
integers.

Return Value
The identifier returned by the PATH function at the specified position in the list of
identifiers. Items returned by the PATH function are ordered by most distant to current.
Remarks
This function can be used to return a specific level from a hierarchy returned by a PATH

function. For example, you could return just the skip-level managers for all
employees.

If you specify a number for position that is less than one (1) or greater than the number
of elements in path, the PATHITEM function returns BLANK

 172

If type is not a valid enumeration element an error is returned.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following example returns the third tier manager of the current employee; it takes
the employee and manager IDs as the input to a PATH function that returns a string with
the hierarchy of parents to current employee. From that string PATHITEM returns the
third entry as an integer.
Code
=PATHITEM(PATH(Employee[EmployeeKey], Employee[ParentEmployeeKey]), 3,

1)

Comments

PATHITEMREVERSE Function
Returns the item at the specified position from a string resulting from evaluation of a
PATH function. Positions are counted backwards from right to left.
Syntax
PATHITEMREVERSE(<path>, <position>[, <type>])
Parameters

Parameter Description

 A text string resulting from
evaluation of a PATH function.

 An integer expression with the
position of the item to be returned.
Position is counted backwards from
right to left.

 (Optional) An enumeration that
defines the data type of the result:

Enumeration Alternate
Enumeration

Description

TEXT 0 Results are

http://go.microsoft.com/fwlink/?LinkId=219172�

 173

returned
with the
data type of
text.
(default)

INTEGER 1 Results are
returned
with the
data type of
integer.

Return Value
The n-position ascendant in the given path, counting from current to the oldest.
Remarks
• This function can be used to get an individual item from a hierarchy resulting from a

PATH function.
• This function reverses the standard order of the hierarchy, so that closest items are

listed first, For example, if the PATh function returns a list of managers above an
employee in a hierarchy, the PATHITEMREVERSE function returns the employee’s
immediate manager in position 2 because position 1 contains the employee’s id.

• If the number specified for position is less than one (1) or greater than the number of
elements in path, the PATHITEM function returns BLANK.

• If type is not a valid enumeration element an error is returned.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following example takes an employee ID column as the input to a PATH function,
and reverses the list of grandparent elements that are returned. The position specified is
3 and the return type is 1; therefore, the PATHITEMREVERSE function returns an integer
representing the manager two levels up from the employee.
Code
=PATHITEMREVERSE(PATH(Employee[EmployeeKey],

Employee[ParentEmployeeKey]), 3, 1)

Comments

http://go.microsoft.com/fwlink/?LinkId=219172�

 174

PATHLENGTH Function
Returns the number of parents to the specified item in a given PATH result, including
self.
Syntax
PATHLENGTH(<path>)
Parameters

Parameter Description

 A text expression resulting from
evaluation of a PATH function.

Return Value
The number of items that are parents to the specified item in a given PATH result,
including the specified item.
Remarks
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following example takes an employee ID as input to a PATH function and returns a
list of the managers above that employee in the hierarchy, The PATHLENGTH function
takes that result and counts the different levels of employees and managers, including
the employee you started with.
Code
=PATHLENGTH(PATH(Employee[EmployeeKey], Employee[ParentEmployeeKey]))

Comments

USERNAME Function
Returns the domain name and username from the credentials given to the system at
connection time
Syntax
USERNAME()
Parameters

http://go.microsoft.com/fwlink/?LinkId=219172�

 175

Return Value
The username from the credentials given to the system at connection time
Exceptions

Remarks
Under Windows authentication, the returned string has the structure: <domain-
name>\<user-name>
Example
Description
The following code verifies if the user login is part of the UsersTable.
Code
=IF(CONTAINS(UsersTable,UsersTable[login], USERNAME()), "Allowed",

BLANK())

Comments

Logical Functions
Logical functions act upon an expression to return information about the values or sets
in the expression. For example, you can use the IF function to check the result of an
expression and create conditional results.

In this Section
AND Function
FALSE Function
IF Function
IFERROR Function
NOT Function
OR Function
SWITCH Function
TRUE Function

Reference
Using DAX
Basic DAX Syntax

Related Sections
Date and Time Functions (DAX)
Aggregation Functions (DAX)

http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�

 176

Logical Functions (DAX)
Filter and Value Functions (DAX)
Math and Trigonometric Functions (DAX)

See Also
Getting Started with Data Analysis Expressions (DAX)

AND Function
Checks whether both arguments are TRUE, and returns TRUE if both arguments are
TRUE. Otherwise returns false.
Syntax

AND(<logical1>,<logical2>)
Parameters

Term Definition

logical_1, logical_2 The logical values you want to test.

Return Value
Returns true or false depending on the combination of values that you test.
Remarks
The AND function in DAX accepts only two (2) arguments. If you need to perform an
AND operation on multiple expressions, you can create a series of calculations or, better,
use the AND operator (&&) to join all of them in a simpler expression.
Example
Description
The following formula shows the syntax of the AND function.
Code
=IF(AND(10 > 9, -10 < -1), "All true", "One or more false"

Comments
Because both conditions, passed as arguments, to the AND function are true, the
formula returns "All True".
Example
Description
The following sample uses the AND function with nested formulas to compare two sets
of calculations at the same time. For each product category, the formula determines if

http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�

 177

the current year sales and previous year sales of the Internet channel are larger than the
Reseller channel for the same periods. If both conditions are true, for each category the
formula returns the value, "Internet hit".

AND function Column
Labels

Row Labels 2005 2006 2007 2008 Grand
Total

Bib-Shorts

Bike Racks

Bike Stands Internet Hit

Bottles and
Cages

 Internet Hit

Bottom
Brackets

Brakes

Caps

Chains

Cleaners

Cranksets

Derailleurs

Fenders Internet Hit

Forks

Gloves

Handlebars

Headsets

Helmets

Hydration
Packs

Jerseys

Lights

 178

AND function Column
Labels

Locks

Mountain Bikes

Mountain
Frames

Panniers

Pedals

Pumps

Road Bikes

Road Frames

Saddles

Shorts

Socks

Tights

Tires and Tubes Internet Hit

Touring Bikes

Touring Frames

Vests

Wheels

Grand Total

Code
= IF(AND(SUM('InternetSales_USD'[SalesAmount_USD])

 >SUM('ResellerSales_USD'[SalesAmount_USD])

 , CALCULATE(SUM('InternetSales_USD'[SalesAmount_USD]),

PREVIOUSYEAR('DateTime'[DateKey]))

 >CALCULATE(SUM('ResellerSales_USD'[SalesAmount_USD]),

PREVIOUSYEAR('DateTime'[DateKey]))

)

 179

 , "Internet Hit"

 , ""

)

Comments
See Also
Logical Functions

FALSE Function
Returns the logical value FALSE.
Syntax

FALSE()
Return Value
Always FALSE.
Remarks
The word FALSE is also interpreted as the logical value FALSE.
Example
Description
The formula returns the logical value FALSE when the value in the column,
'InternetSales_USD'[SalesAmount_USD], is less than or equal to 200000.
The following table shows the results when the example formula is used with
'ProductCategory'[ProductCategoryName] in Row Labels and 'DateTime'[CalendarYear]
in Column Labels.

True-False Column
Labels

Row Labels 2005 2006 2007 2008 Grand
Total

Accessories FALSE FALSE TRUE TRUE FALSE TRUE

Bikes TRUE TRUE TRUE TRUE FALSE TRUE

Clothing FALSE FALSE FALSE FALSE FALSE TRUE

Components FALSE FALSE FALSE FALSE FALSE FALSE

 FALSE FALSE FALSE FALSE FALSE FALSE

Grand Total TRUE TRUE TRUE TRUE FALSE TRUE

 180

Code
=IF(SUM('InternetSales_USD'[SalesAmount_USD]) >200000, TRUE(), false())

See Also
TRUE
NOT
IF
Function Reference

IF Function
Checks if a condition provided as the first argument is met. Returns one value if the
condition is TRUE, and returns another value if the condition is FALSE.
Syntax

IF(logical_test>,<value_if_true>, value_if_false)
Parameters

Term Definition

logical_test Any value or expression that can be
evaluated to TRUE or FALSE.

value_if_true The value that is returned if the logical test
is TRUE. If omitted, TRUE is returned.

value_if_false The value that is returned if the logical test
is FALSE. If omitted, FALSE is returned.

Return Value
Any type of value that can be returned by an expression.
Remarks
If the value of value_if_true or value_if_false is omitted, IF treats it as an empty string
value ("").
If the value referenced in the expression is a column, IF returns the value that
corresponds to the current row.
The IF function attempts to return a single data type in a column. Therefore, if the values
returned by value_if_true and value_if_false are of different data types, the IF function
will implicitly convert data types to accommodate both values in the column. For
example, the formula IF(<condition>,TRUE(),0) returns a column of ones and zeros

 181

and the results can be summed, but the formula IF(<condition>,TRUE(),FALSE())
returns only logical values. For more information about implicit data type conversion,
see Data Types in DAX.
Example
Description
The following example uses nested IF functions that evaluate the number in the column,
Calls, from the table FactCallCenter in Adventure Works DW Multidimensional 2012 .
The function assigns a label as follows: low if the number of calls is less than 200,
medium if the number of calls is less than 300 but not less than 200, and high for all
other values.
Code
=IF([Calls]<200,"low",IF([Calls]<300,"medium","high"))

Example
Description
The following example gets a list of cities that contain potential customers in the
California area by using columns from the table ProspectiveBuyer in Adventure Works
DW Multidimensional 2012 . Because the list is meant to plan for a campaign that will
target married people or people with children at home, the condition in the IF function
checks for the value of the columns [MaritalStatus] and [NumberChildrenAtHome], and
outputs the city if either condition is met and if the customer is in California. Otherwise, it
outputs the empty string.
Code
=IF([StateProvinceCode]= "CA" && ([MaritalStatus] = "M" ||

[NumberChildrenAtHome] >1),[City])

Comments
Note that parentheses are used to control the order in which the AND (&&) and OR (||)
operators are used. Also note that no value has been specified for value_if_false.
Therefore, the function returns the default, which is an empty string.
See Also
TRUE
FALSE
NOT
IF
Function Reference

IFERROR Function
Evaluates an expression and returns a specified value if the expression returns an error;
otherwise returns the value of the expression itself.

http://msdn.microsoft.com/en-us/library/48f23cba-07df-4a0e-b077-8ffccd344552(SQL.110)�

 182

Syntax

IFERROR(value, value_if_error)
Parameters

Term Definition

value Any value or expression.

value_if_error Any value or expression.

Return Value
A scalar of the same type as value
Exceptions
Remarks
You can use the IFERROR function to trap and handle errors in an expression.
If value or value_if_error is an empty cell, IFERROR treats it as an empty string value ("").
The IFERROR function is based on the IF function, and uses the same error messages, but
has fewer arguments. The relationship between the IFERROR function and the IF function
as follows:
IFERROR(A,B) := IF(ISERROR(A), B, A)
Note that the values that are returned for A and B must be of the same data type;
therefore, the column or expression used for value and the value returned for
value_if_error must be the same data type.
Example
Description
The following example returns 9999 if the expression 25/0 evaluates to an error. If the
expression returns a value other than error, that value is passed to the invoking
expression.
Code
=IFERROR(25/0,9999)

Comments
See Also
Logical Functions

NOT Function
Changes FALSE to TRUE, or TRUE to FALSE.

 183

Syntax

NOT(<logical>)
Parameters

Term Definition

logical A value or expression that can be evaluated
to TRUE or FALSE.

Return Value
TRUE OR FALSE.
Example
Description
The following example retrieves values from the calculated column that was created to
illustrate the IF function. For that example, the calculated column was named using the
default name, Calculated Column1, and contains the following formula:
=IF([Orders]<300,"true","false")
The formula checks the value in the column, [Orders], and returns "true" if the number of
orders is under 300.
Now create a new calculated column, Calculated Column2, and type the following
formula.
Code
=NOT([CalculatedColumn1])

Comments
For each row in Calculated Column1, the values "true" and "false" are interpreted as the
logical values TRUE or FALSE, and the NOT function returns the logical opposite of that
value.
See Also
TRUE
FALSE
IF
Function Reference

OR Function
Checks whether one of the arguments is TRUE to return TRUE. The function returns
FALSE if both arguments are FALSE.

 184

Syntax

OR(<logical1>,<logical2>)
Parameters

Term Definition

logical_1, logical_2 The logical values you want to test.

Return Value
A Boolean value. The value is TRUE if any of the two arguments is TRUE; the value is
FALSE if both the arguments are FALSE.
Remarks
The OR function in DAX accepts only two (2) arguments. If you need to perform an OR
operation on multiple expressions, you can create a series of calculations or, better, use
the OR operator (||) to join all of them in a simpler expression.
The function evaluates the arguments until the first TRUE argument, then returns TRUE.
Example
Description
The following example shows how to use the OR function to obtain the sales people that
belong to the Circle of Excellence. The Circle of Excellence recognizes those who have
achieved more than a million dollars in Touring Bikes sales or sales of over two and a half
million dollars in 2007.

SalesPersonFlag True

OR function Column
Labels

Row Labels 2005 2006 2007 2008 Grand
Total

Abbas, Syed E

Alberts, Amy
E

Ansman-
Wolfe, Pamela
O

 185

SalesPersonFlag True

Blythe,
Michael G

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Campbell,
David R

Carson, Jillian Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Ito, Shu K

Jiang,
Stephen Y

Mensa-
Annan, Tete A

Mitchell,
Linda C

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Pak, Jae B Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Reiter, Tsvi
Michael

Saraiva, José
Edvaldo

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Tsoflias, Lynn
N

Valdez, Rachel
B

Vargas,
Garrett R

Varkey
Chudukatil,
Ranjit R

 Circle of
Excellence

Grand Total Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Circle of
Excellence

Code

 186

IF(OR(CALCULATE(SUM('ResellerSales_USD'[SalesAmount_USD]),

'ProductSubcategory'[ProductSubcategoryName]="Touring Bikes") > 1000000

 , CALCULATE(SUM('ResellerSales_USD'[SalesAmount_USD]),

'DateTime'[CalendarYear]=2007) > 2500000

)

 , "Circle of Excellence"

 , ""

)

Comments
See Also
Logical functions

SWITCH Function
Evaluates an expression against a list of values and returns one of multiple possible
result expressions.
Syntax
SWITCH(<expression>, <value>, <result>[, <value>, <result>]…[, <else>])
Parameters

Parameter Description

 Any DAX expression that returns a
single scalar value, where the
expression is to be evaluated
multiple times (for each
row/context).

 A constant value to be matched
with the results of expression.

 Any scalar expression to be
evaluated if the results of
expression match the
corresponding value.

 Any scalar expression to be
evaluated if the result of
expression doesn't match any of
the value arguments.

 187

Return Value
A scalar value coming from one of the result expressions, if there was a match with value,
or from the else expression, if there was no match with any value.
Exceptions

Remarks
All result expressions and the else expression must be of the same data type.
Example
Description
The following example creates a calculated column of month names.
Code
=SWITCH([Month], 1, "January", 2, "February", 3, "March", 4, "April"

 , 5, "May", 6, "June", 7, "July", 8, "August"

 , 9, "September", 10, "October", 11, "November", 12,

"December"

 , "Unknown month number")

Comments

TRUE Function
Returns the logical value TRUE.
Syntax

TRUE()
Return Value
Always TRUE.
Remarks
The word TRUE is also interpreted as the logical value TRUE.
Example
Description
The formula returns the logical value TRUE when the value in the column,
'InternetSales_USD'[SalesAmount_USD], is greater than 200000.
The following table shows the results when the example formula is used in a PivotTable,
with 'ProductCategory'[ProductCategoryName] in Row Labels and
'DateTime'[CalendarYear] in Column Labels.

 188

True-False Column
Labels

Row Labels 2005 2006 2007 2008 Grand
Total

Accessories FALSE FALSE TRUE TRUE FALSE TRUE

Bikes TRUE TRUE TRUE TRUE FALSE TRUE

Clothing FALSE FALSE FALSE FALSE FALSE TRUE

Components FALSE FALSE FALSE FALSE FALSE FALSE

 FALSE FALSE FALSE FALSE FALSE FALSE

Grand Total TRUE TRUE TRUE TRUE FALSE TRUE

Code
= IF(SUM('InternetSales_USD'[SalesAmount_USD]) >200000, TRUE(),

false())

See Also
FALSE
NOT
IF
Function Reference

Math and Trig Functions
The mathematical functions in Data Analysis Expressions (DAX) are very similar to the
Excel mathematical and trigonometric functions. This section lists the mathematical
functions provided by DAX.
The numeric data types used by DAX functions are described in the section, Data Types
in DAX.

In this Section
ABS Function
CEILING Function
CURRENCY Function
EXP Function
FACT Function
FLOOR Function

http://msdn.microsoft.com/en-us/library/48f23cba-07df-4a0e-b077-8ffccd344552(SQL.110)�
http://msdn.microsoft.com/en-us/library/48f23cba-07df-4a0e-b077-8ffccd344552(SQL.110)�

 189

INT Function
ISO.CEILING Function
LN Function
LOG Function
LOG10 Function
MOD Function
MROUND Function
PI Function
POWER Function
QUOTIENT Function
RAND Function (DAX)
RANDBETWEEN Function (DAX)
ROUND Function
ROUNDDOWN Function
ROUNDUP Function
SIGN Function
SQRT Function
SUM Function
SUMX Function
TRUNC Function

Reference
Using DAX
Basic DAX Syntax

Related Sections
Date and Time Functions (DAX)
Aggregation Functions (DAX)
Logical Functions (DAX)
Filter and Value Functions (DAX)
Math and Trigonometric Functions (DAX)

See Also
Getting Started with Data Analysis Expressions (DAX)

ABS Function
Returns the absolute value of a number.

http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�

 190

Syntax

ABS(<number>)
Parameters

Term Definition

number The number for which you want the
absolute value.

Return Value
A decimal number.
Remarks
The absolute value of a number is a decimal number, whole or decimal, without its sign.
You can use the ABS function to ensure that only non-negative numbers are returned
from expressions when nested in functions that require a positive number.
Example
Description
The following example returns the absolute value of the difference between the list price
and the dealer price, which you might use in a new calculated column, DealerMarkup.
Code
=ABS([DealerPrice]-[ListPrice])

See Also
Scalar math and trig functions
SIGN function

CEILING Function
Rounds a number up, to the nearest integer or to the nearest multiple of significance.
Syntax

CEILING(<number>, <significance>)
Parameters

Term Definition

number The number you want to round, or a
reference to a column that contains

 191

Term Definition

numbers.

significance The multiple of significance to which you
want to round. For example, to round to
the nearest integer, type 1.

Return Value
A number rounded as specified.
Remarks
There are two CEILING functions in DAX, with the following differences:
• The CEILING function emulates the behavior of the CEILING function in Excel.
• The ISO.CEILING function follows the ISO-defined behavior for determining the

ceiling value.
The two functions return the same value for positive numbers, but different values for
negative numbers. When using a positive multiple of significance, both CEILING and
ISO.CEILING round negative numbers upward (toward positive infinity). When using a
negative multiple of significance, CEILING rounds negative numbers downward (toward
negative infinity), while ISO.CEILING rounds negative numbers upward (toward positive
infinity).
The return type is usually of the same type of the significant argument, with the
following exceptions:
• If the number argument type is currency, the return type is currency.
• If the significance argument type is Boolean, the return type is integer.
• If the significance argument type is non-numeric, the return type is real.
Example
Description
The following formula returns 4.45. This might be useful if you want to avoid using
smaller units in your pricing. If an existing product is priced at $4.42, you can use
CEILING to round prices up to the nearest unit of five cents.
Code
=CEILING(4.42,0.05)

Example
Description
The following formula returns similar results as the previous example, but uses numeric
values stored in the column, ProductPrice.
Code
=CEILING([ProductPrice],0.05)

 192

See Also
Math and Trig functions
FLOOR function
ISO.CEILING Function (DAX)
ROUNDUP function

CURRENCY Function
Evaluates the argument and returns the result as currency data type.
Syntax
CURRENCY(<value>)
Parameters

Parameter Description

 Any DAX expression that returns a
single scalar value where the
expression is to be evaluated
exactly once before all other
operations.

Return Value
The value of the expression evaluated and returned as a currency type value.
Remarks
• The CURRENCY function rounds up the 5th significant decimal, in value, to return the

4th decimal digit; rounding up occurs if the 5th significant decimal is equal or larger
than 5. For example, if value is 3.6666666666666 then converting to currency returns
$3.6667; however, if value is 3.0123456789 then converting to currency returns
$3.0123.

• If the data type of the expression is TrueFalse then CURRENCY(<TrueFalse>) will
return $1.0000 for True values and $0.0000 for False values.

• If the data type of the expression is Text then CURRENCY(<Text>) will try to convert
text to a number; if conversion succeeds the number will be converted to currency,
otherwise an error is returned.

• If the data type of the expression is DateTime then CURRENCY(<DateTime>) will
convert the datetime value to a number and that number to currency. DateTime
values have an integer part that represents the number of days between the given
date and 1900-03-01 and a fraction that represents the fraction of a day (where 12
hours or noon is 0.5 day). If the value of the expression is not a proper DateTime
value an error is returned.

 193

Example
Description
Convert number 1234.56 to currency data type.
Code
=CURRENCY(1234.56)

Comments
Returns the value $1234.5600.

EXP Function
Returns raised to the power of a given number. The constant e equals
2.71828182845904, the base of the natural logarithm.
Syntax

EXP(<number>)
Parameters

Term Definition

number The exponent applied to the base . The
constant equals 2.71828182845904, the
base of the natural logarithm.

Return Value
A decimal number.
Exceptions
Remarks
EXP is the inverse of LN, which is the natural logarithm of the given number.
To calculate powers of bases other than , use the exponentiation operator (^). For more
information, see Operator Reference.
Example
Description
The following formula calculates raised to the power of the number contained in the
column, [Power].
Code
=EXP([Power])

See Also

 194

Scalar math and trig functions
LN Function
EXP
LOG10
LOG

FACT Function
Returns the factorial of a number, equal to the series 1*2*3*...* , ending in the given
number.
Syntax

FACT(<number>)
Parameters

Term Definition

number The non-negative number for which you
want to calculate the factorial.

Return Value
A decimal number.
Remarks
If the number is not an integer, it is truncated and an error is returned. If the result is too
large, an error is returned.

Example
Description
The following formula returns the factorial for the series of integers in the column,
[Values].
Code
=FACT([Values])

Comments
The following table shows the expected results:

 195

Values Results

0 1

1 1

2 2

3 6

4 24

5 120

170 7.257415615308E+306

See Also
Scalar math and trig functions
TRUNC

FLOOR Function
Rounds a number down, toward zero, to the nearest multiple of significance.
Syntax

FLOOR(<number>, <significance>)
Parameters

Term Definition

number The numeric value you want to round.

significance The multiple to which you want to round.
The arguments number and significance
must either both be positive, or both be
negative.

Return Value
A decimal number.
Remarks
If either argument is nonnumeric, FLOOR returns #VALUE! error value.
If number and significance have different signs, FLOOR returns the #NUM! error value.

 196

Regardless of the sign of the number, a value is rounded down when adjusted away from
zero. If the number is an exact multiple of significance, no rounding occurs.
Example
Description
The following formula takes the values in the [Total Product Cost] column from the table,
InternetSales.and rounds down to the nearest multiple of .1.
Code
=FLOOR(InternetSales[Total Product Cost],.5)

Comments
The following table shows the expected results for some sample values.

Values Expected Result

10.8423 10.8

8.0373 8

2.9733 2.9

See Also
Scalar math and trig functions

INT Function
Rounds a number down to the nearest integer.
Syntax

INT(<number>)
Parameters

Term Definition

number The number you want to round down to an
integer

Return Value
A whole number.
Remarks

 197

TRUNC and INT are similar in that both return integers. TRUNC removes the fractional
part of the number. INT rounds numbers down to the nearest integer based on the value
of the fractional part of the number. INT and TRUNC are different only when using
negative numbers: TRUNC(-4.3) returns -4, but INT(-4.3) returns -5 because -5 is the
lower number.
Example
Description
The following expression rounds the value to 1. If you use the ROUND function, the
result would be 2.
Code
=INT(1.5)

See Also
math and trig functions
ROUND
ROUNDUP
ROUNDDOWN
MROUND

ISO.CEILING Function
Rounds a number up, to the nearest integer or to the nearest multiple of significance.
Syntax

ISO.CEILING(<number>[, <significance>])
Parameters

Term Definition

number The number you want to round, or a
reference to a column that contains
numbers.

significance (optional) The multiple of significance to
which you want to round. For example, to
round to the nearest integer, type 1. If the
unit of significance is not specified, the
number is rounded up to the nearest
integer.

 198

Return Value
A number, of the same type as the number argument, rounded as specified.
Remarks
There are two CEILING functions in DAX, with the following differences:
• The CEILING function emulates the behavior of the CEILING function in Excel.
• The ISO.CEILING function follows the ISO-defined behavior for determining the

ceiling value.
The two functions return the same value for positive numbers, but different values for
negative numbers. When using a positive multiple of significance, both CEILING and
ISO.CEILING round negative numbers upward (toward positive infinity). When using a
negative multiple of significance, CEILING rounds negative numbers downward (toward
negative infinity), while ISO.CEILING rounds negative numbers upward (toward positive
infinity).
The result type is usually the same type of the significance used as argument with the
following exceptions:
• If the first argument is of currency type then the result will be currency type.
• If the optional argument is not included the result is of integer type.
• If the significance argument is of Boolean type then the result is of integer type.
• If the significance argument is non-numeric type then the result is of real type.
Example: Positive Numbers
Description
The following formula returns 4.45. This might be useful if you want to avoid using
smaller units in your pricing. If an existing product is priced at $4.42, you can use
ISO.CEILING to round prices up to the nearest unit of five cents.
Code
=ISO.CEILING(4.42,0.05)

Example: Negative Numbers
Description
The following formula returns the ISO ceiling value of -4.40.
Code
=ISO.CEILING(-4.42,0.05)

See Also
Math and Trig functions
FLOOR function
CEILING Function (DAX)
ROUNDUP function

 199

LN Function
Returns the natural logarithm of a number. Natural logarithms are based on the constant
(2.71828182845904).
Syntax

LN(<number>)
Parameters

Term Definition

number The positive number for which you want
the natural logarithm.

Return Value
A decimal number.
Remarks
LN is the inverse of the EXP function.
Example
Description
The following example returns the natural logarithm of the number in the column,
[Values].
Code
=LN([Values])

See Also
Scalar math and trig functions
EXP Function

LOG Function
Returns the logarithm of a number to the base you specify.
Syntax

LOG(<number>,<base>)
Parameters

 200

Term Definition

number The positive number for which you want
the logarithm.

base The base of the logarithm. If omitted, the
base is 10.

Return Value
A decimal number.
Remarks
You might receive an error if the value is too large to be displayed.
The function LOG10 is similar, but always returns the common logarithm, meaning the
logarithm for the base 10.
Example
Description
The following formulas return the same result, 2.
Code
=LOG(100,10)

=LOG(100)

=LOG10(100)

See Also
Scalar math and trig functions
EXP
LOG10
LOG

LOG10 Function
Returns the base-10 logarithm of a number.
Syntax

LOG10(<number>)
Parameters

Term Definition

number A positive number for which you want the

 201

Term Definition

base-10 logarithm.

Return Value
A decimal number.
Remarks
The LOG function lets you change the base of the logarithm, instead of using the base
10.
Example
Description
The following formulas return the same result, 2:
Code
=LOG(100,10)

=LOG(100)

=LOG10(100)

See Also
Scalar math and trig functions
EXP
LOG10
LOG

MOD Function
Returns the remainder after a number is divided by a divisor. The result always has the
same sign as the divisor.
Syntax

MOD(<number>, <divisor>)
Parameters

Term Definition

number The number for which you want to find the
remainder after the division is performed.

divisor The number by which you want to divide.

 202

Return Value
A whole number.
Remarks
If the divisor is 0 (zero), MOD returns an error. You cannot divide by 0.
The MOD function can be expressed in terms of the INT function:
Example
Description
The following formula returns 1, the remainder of 3 divided by 2.
Code
=MOD(3,2)

Example
Description
The following formula returns -1, the remainder of 3 divided by 2. Note that the sign is
always the same as the sign of the divisor.
Code
=MOD(-3,-2)

See Also
math and trig functions
ROUND
ROUNDUP
ROUNDDOWN
MROUND
INT

MROUND Function
Returns a number rounded to the desired multiple.
Syntax

MROUND(<number>, <multiple>)
Parameters

Term Definition

number The number to round.

multiple The multiple of significance to which you

 203

Term Definition

want to round the number.

Return Value
A decimal number.
Remarks
MROUND rounds up, away from zero, if the remainder of dividing number by the
specified multiple is greater than or equal to half the value of multiple.
Example: Decimal Places
Description
The following expression rounds 1.3 to the nearest multiple of .2. The expected result is
1.4.
Code
=MROUND(-1.3,0.2)

Example: Negative Numbers
Description
The following expression rounds -10 to the nearest multiple of -3. The expected result is
-9.
Code
=MROUND(-10,-3)

Example: Error
Description
The following expression returns an error, because the numbers have different signs.
Code
=MROUND(5,-2)

See Also
math and trig functions
ROUND
ROUNDUP
ROUNDDOWN
MROUND
INT

PI Function
Returns the value of Pi, 3.14159265358979, accurate to 15 digits.

 204

Syntax

PI()
Return Value
A decimal number with the value of Pi, 3.14159265358979, accurate to 15 digits.
Remarks
Pi is a mathematical constant. In DAX, Pi is represented as a real number accurate to 15
digits, the same as Excel.
Example
Description
The following formula calculates the area of a circle given the radius in the column,
[Radius].
Code
=PI()*([Radius]*2)

See Also
math and trig functions

POWER Function
Returns the result of a number raised to a power.
Syntax

POWER(<number>, <power>)
Parameters

Term Definition

number The base number, which can be any real
number.

power The exponent to which the base number is
raised.

Return Value
A decimal number.
Example
Description
The following example returns 25.

 205

Code
=POWER(5,2)

See Also
Scalar math and trig functions

QUOTIENT Function
Performs division and returns only the integer portion of the division result. Use this
function when you want to discard the remainder of division.
Syntax

QUOTIENT(<numerator>, <denominator>)
Parameters

Term Definition

numerator The dividend, or number to divide.

denominator The divisor, or number to divide by.

Return Value
A whole number.
Remarks
If either argument is non-numeric, QUOTIENT returns the #VALUE! error value.
You can use a column reference instead of a literal value for either argument. However, if
the column that you reference contains a 0 (zero), an error is returned for the entire
column of values.
Example
Description
The following formulas return the same result, 2.
Code
=QUOTIENT(5,2)

=QUOTIENT(10/2,2)

See Also
Scalar math and trig functions

 206

RAND Function
Returns a random number greater than or equal to 0 and less than 1, evenly distributed.
The number that is returned changes each time the cell containing this function is
recalculated.
Syntax

RAND()
Return Value
A decimal number.
Remarks
In PowerPivot workbooks, recalculation depends on various factors, including whether
the workbook is set to Manual or Automatic recalculation mode, and whether data has
been refreshed. This is different from Microsoft Excel, where you can control when RAND
generates a new random number by turning off recalculation.
For more information, see Data Refresh and Recalculation.
RAND and other volatile functions that do not have fixed values are not always
recalculated. For example, execution of a query or filtering will usually not cause such
functions to be re-evaluated. However, the results for these functions will be recalculated
when the entire column is recalculated. These situations include refresh from an external
data source or manual editing of data that causes re-evaluation of formulas that contain
these functions.
Moreover, RAND is always recalculated if the function is used in the definition of a
measure.
Also, in such contexts the RAND function cannot return a result of zero, to prevent errors
such as division by zero.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
To generate a random real number between two other numbers, you can use a formula
like the following:
Code
= RAND()*(int1-int2)+int1

See Also
Scalar math and trig functions
Relational math and trig functions

http://msdn.microsoft.com/en-us/library/d70b953f-4716-413f-8021-a69be0ef9b6b(SQL.110)�
http://msdn.microsoft.com/en-us/library/600b182f-4dcd-47c6-81ab-bc8f56825d51(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=219172�

 207

RANDBETWEEN Function
Returns a random number in the range between two numbers you specify.
Syntax

RANDBETWEEN(<bottom>,<top>)
Parameters

Term Definition

Bottom The smallest integer the function will
return.

Top The largest integer the function will return.

Return Value
A whole number.
Remarks
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following formula returns a random number between 1 and 10.
Code
=RANDBETWEEN(1,10)

See Also
Scalar math and trig functions
Relational math and trig functions

ROUND Function
Rounds a number to the specified number of digits.
Syntax

ROUND(<number>, <num_digits>)
Parameters

http://go.microsoft.com/fwlink/?LinkId=219172�

 208

Term Definition

number The number you want to round.

num_digits The number of digits to which you want to
round. A negative value rounds digits to
the left of the decimal point; a value of zero
rounds to the nearest integer.

Return Value
A decimal number.
Remarks
If num_digits is greater than 0 (zero), then number is rounded to the specified number
of decimal places.
If num_digits is 0, the number is rounded to the nearest integer.
If num_digits is less than 0, the number is rounded to the left of the decimal point.
Related Functions
To always round up (away from zero), use the ROUNDUP function.
To always round down (toward zero), use the ROUNDDOWN function.
To round a number to a specific multiple (for example, to round to the nearest multiple
of 0.5), use the MROUND function.
You can use the functions TRUNC and INT to obtain the integer portion of the number.
Example
Description
The following formula rounds 2.15 up, to one decimal place. The expected result is 2.2.
Code
=ROUND(2.15,1)

Example
Description
The following formula rounds 21.5 to one decimal place to the left of the decimal point.
The expected result is 20.
Code
=ROUND(21.5,-1)

See Also
Math and Trig functions
ROUND
ROUNDDOWN

 209

MROUND
INT
TRUNC

ROUNDDOWN Function
Rounds a number down, toward zero.
Syntax

ROUNDDOWN(<number>, <num_digits>)
Parameters

Term Definition

number A real number that you want rounded
down.

num_digits The number of digits to which you want to
round. Negative rounds to the left of the
decimal point; zero to the nearest integer.

Return Value
A decimal number.
Remarks
If num_digits is greater than 0 (zero), then the value in number is rounded down to the
specified number of decimal places.
If num_digits is 0, then the value in number is rounded down to the nearest integer.
If num_digits is less than 0, then the value in number is rounded down to the left of the
decimal point.
Related Functions
ROUNDDOWN behaves like ROUND, except that it always rounds a number down. The
INT function also rounds down, but with INT the result is always an integer, whereas with
ROUNDDOWN you can control the precision of the result.
Example
Description
The following example rounds 3.14159 down to three decimal places. The expected
result is 3.141.
Code
=ROUNDDOWN(3.14159,3)

 210

Example
Description
The following example rounds the value of 31415.92654 down to 2 decimal places to the
left of the decimal. The expected result is 31400.
Code
=ROUNDDOWN(31415.92654, -2)

See Also
Math and Trig functions
ROUND
ROUNDUP
ROUNDDOWN
MROUND
INT

ROUNDUP Function
Rounds a number up, away from 0 (zero).
Syntax

ROUNDUP(<number>, <num_digits>)
Parameters

Term Definition

number A real number that you want to round up.

num_digits The number of digits to which you want to
round. A negative value for num_digits
rounds to the left of the decimal point; if
num_digits is zero or is omitted, number
is rounded to the nearest integer.

Return Value
A decimal number.
Remarks
ROUNDUP behaves like ROUND, except that it always rounds a number up.
• If num_digits is greater than 0 (zero), then the number is rounded up to the

specified number of decimal places.

 211

• If num_digits is 0, then number is rounded up to the nearest integer.
• If num_digits is less than 0, then number is rounded up to the left of the decimal

point.
Related Functions
ROUNDUP behaves like ROUND, except that it always rounds a number up.
Example
Description
The following formula rounds Pi to four decimal places. The expected result is 3.1416.
Code
=ROUNDUP(PI(),4)

Example: Decimals as Second Argument
Description
The following formula rounds 1.3 to the nearest multiple of 0.2. The expected result is
1.4.
Code
=ROUNDUP(1.3,0.2)

Example: Negative Number as Second Argument
Description
The following formula rounds the value in the column, FreightCost, with the expected
results shown in the following table:
Code
=ROUNDUP([Values],-1)

Comments
When num_digits is less than zero, the number of places to the left of the decimal sign
is increased by the value you specify.

FreightCost Expected Result

13.25 20

2.45 10

25.56 30

1.34 10

345.01 350

See Also

 212

math and trig functions
ROUND
ROUNDDOWN
MROUND
INT

SIGN Function
Determines the sign of a number, the result of a calculation, or a value in a column. The
function returns 1 if the number is positive, 0 (zero) if the number is zero, or -1 if the
number is negative.
Syntax

SIGN(<number>)
Parameters

Term Definition

number Any real number, a column that contains
numbers, or an expression that evaluates to
a number.

Return Value
A whole number. The possible return values are 1, 0, and -1.

Return Value Description

1 The number is positive

0 The number is zero

-1 The number is negative

Example
Description
The following formula returns the sign of the result of the expression that calculates sale
price minus cost.
Code
=SIGN(([Sale Price] - [Cost]))

 213

See Also
math and trig functions

SQRT Function
Returns the square root of a number.
Syntax

SQRT(<number>)
Parameters

Term Definition

number The number for which you want the square
root, a column that contains numbers, or
an expression that evaluates to a number.

Return Value
A decimal number.
Remarks
If the number is negative, the SQRT function returns an error.
Example
Description
The following formula returns 5.
Code
=SQRT(25)

See Also
Scalar math and trig functions

SUM Function
Adds all the numbers in a column.
Syntax

SUM(<column>)
Parameters

 214

Term Definition

column The column that contains the numbers to
sum.

Return Value
A decimal number.
Remarks
If any rows contain non-numeric values, blanks are returned.
If you want to filter the values that you are summing, you can use the SUMX function
and specify an expression to sum over.
Example
Description
The following example adds all the numbers that are contained in the column, Amt, from
the table, Sales.
Code
=SUM(Sales[Amt])

See Also
SUMX
Aggregation functions

SUMX Function
Returns the sum of an expression evaluated for each row in a table.
Syntax

SUMX(<table>, <expression>)
Parameters

Term Definition

table The table containing the rows for which the
expression will be evaluated.

expression The expression to be evaluated for each
row of the table.

Return Value

 215

A decimal number.
Remarks
The SUMX function takes as its first argument a table, or an expression that returns a
table. The second argument is a column that contains the numbers you want to sum, or
an expression that evaluates to a column.
Only the numbers in the column are counted. Blanks, logical values, and text are ignored.
To see some more complex examples of SUMX in formulas, see ALL
and CALCULATETABLE.
Example
Description
The following example first filters the table, InternetSales, on the expression,
ShippingTerritoryID = 5, and then returns the sum of all values in the column,
Freight. In other words, the expression returns the sum of freight charges for only the
specified sales area.
Code
=SUMX(FILTER(InternetSales,

InternetSales[SalesTerritoryID]=5),[Freight])

Comments
If you do not need to filter the column, use the SUM function. The SUM function is
similar to the Excel function of the same name, except that it takes a column as a
reference.
See Also
SUM
Aggregation functions

TRUNC Function
Truncates a number to an integer by removing the decimal, or fractional, part of the
number.
Syntax

TRUNC(<number>,<num_digits>)
Parameters

Term Definition

number The number you want to truncate.

num_digits A number specifying the precision of the

 216

Term Definition

truncation; if omitted, 0 (zero)

Return Value
A whole number.
Remarks
TRUNC and INT are similar in that both return integers. TRUNC removes the fractional
part of the number. INT rounds numbers down to the nearest integer based on the value
of the fractional part of the number. INT and TRUNC are different only when using
negative numbers: TRUNC(-4.3) returns -4, but INT(-4.3) returns -5 because -5 is the
smaller number.
Example
Description
The following formula returns 3, the integer part of pi.
Code
=TRUNC(PI())

Example
Description
The following formula returns -8, the integer part of -8.9.
Code
=TRUNC(-8.9)

See Also
math and trig functions
ROUND
ROUNDUP
ROUNDDOWN
MROUND
INT

Statistical Functions
Data Analysis Expressions (DAX) provides many functions for creating aggregations such
as sums, counts, and averages. These functions are very similar to aggregation functions
used by Microsoft Excel. This section lists the statistical and aggregation functions
provided in DAX.

In this Section

 217

ADDCOLUMNS
AVERAGE
AVERAGEA
AVERAGEX
COUNT
COUNTA
COUNTAX
COUNTBLANK
COUNTROWS
COUNTX
CROSSJOIN
DISTINCTCOUNT
GENERATE
GENERATEALL
MAX
MAXA
MAXX
MINA
MIN
MINX
RANK.EQ
RANKX
ROW
STDEV.P
STDEV.S
STDEVX.P
STDEVX.S
SUMMARIZE
TOPN
VAR.P
VAR.S
VARX.P
VARX.S

Reference
Using DAX

http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�

 218

Basic DAX Syntax

Related Sections
Date and Time Functions (DAX)
Aggregation Functions (DAX)
Logical Functions (DAX)
Filter and Value Functions (DAX)
Math and Trigonometric Functions (DAX)

See Also
Getting Started with Data Analysis Expressions (DAX)

ADDCOLUMNS Function
Adds calculated columns to the given table or table expression.
Syntax
ADDCOLUMNS(<table>, <name>, <expression>[, <name>, <expression>]…)
Parameters

Parameter Description

table Any DAX expression that returns a
table of data.

name The name given to the column,
enclosed in double quotes.

expression Any DAX expression that returns a
scalar expression, evaluated for
each row of table.

Return Value
A table with all its original columns and the added ones.
Remarks

Example
Description
The following example returns an extended version of the Product Category table that
includes total sales values from the reseller channel and the internet sales.
Code
ADDCOLUMNS(ProductCategory,

http://msdn.microsoft.com/en-us/library/c52ffd40-1c7b-48ff-b666-9dae3b749a1e(SQL.110)�

 219

 , "Internet Sales",

SUMX(RELATEDTABLE(InternetSales_USD),

InternetSales_USD[SalesAmount_USD])

 , "Reseller Sales",

SUMX(RELATEDTABLE(ResellerSales_USD),

ResellerSales_USD[SalesAmount_USD]))

Comments
The following table shows a preview of the data as it would be received by any function
expecting to receive a table:

ProductCategory[Pr
oductCategoryName
]

ProductCategory[Produ
ctCategoryAlternateKey
]

ProductCategory[P
roductCategoryKey
]

[Inter
net
Sales]

[Rese
ller
Sales]

Bikes 1 1 25107
749.7
7

63084
675.0
4

Components 2 2 11205
837.9
6

Clothing 3 3 30615
7.582
9

16699
43.26
7

Accessories 4 4 64092
0.133
8

53430
1.988
8

AVERAGE Function
Returns the average (arithmetic mean) of all the numbers in a column.
Syntax

AVERAGE(<column>)
Parameters

 220

Term Definition

column The column that contains the numbers for
which you want the average.

Return Value
Returns a decimal number that represents the arithmetic mean of the numbers in the
column.
Remarks
This function takes the specified column as an argument and finds the average of the
values in that column. If you want to find the average of an expression that evaluates to
a set of numbers, use the AVERAGEX function instead.
Nonnumeric values in the column are handled as follows:
• If the column contains text, no aggregation can be performed, and the functions

returns blanks.
• If the column contains logical values or empty cells, those values are ignored.
• Cells with the value zero are included.
• When you average cells, you must keep in mind the difference between an empty cell

and a cell that contains the value 0 (zero). When a cell contains 0, it is added to the
sum of numbers and the row is counted among the number of rows used as the
divisor. However, when a cell contains a blank, the row is not counted.

Whenever there are no rows to aggregate, the function returns a blank. However, if there
are rows, but none of them meet the specified criteria, the function returns 0. Excel also
returns a zero if no rows are found that meet the conditions.
Example
Description
The following formula returns the average of the values in the column,
ExtendedSalesAmount, in the table, InternetSales.
Code
=AVERAGE(InternetSales[ExtendedSalesAmount])

Related Functions
The AVERAGEX function can take as its argument an expression that is evaluated for
each row in a table. This enables you to perform calculations and then take the average
of the calculated values.
The AVERAGEA function takes a column as its argument, but otherwise is like the Excel
function of the same name. By using the AVERAGEA function, you can calculate a mean
on a column that contains empty values.
See Also

 221

AVERAGEA
AVERAGEX
Aggregation functions

AVERAGEA Function
Returns the average (arithmetic mean) of the values in a column. Handles text and non-
numeric values.
Syntax

AVERAGEA(<column>)
Parameters

Term Definition

column A column that contains the values for
which you want the average.

Return Value
A decimal number.
Remarks
The AVERAGEA function takes a column and averages the numbers in it, but also handles
non-numeric data types according to the following rules:
• Values that evaluates to TRUE count as 1.
• Values that evaluate to FALSE count as 0 (zero).
• Values that contain non-numeric text count as 0 (zero).
• Empty text ("") counts as 0 (zero).
If you do not want to include logical values and text representations of numbers in a
reference as part of the calculation, use the AVERAGE function.
Whenever there are no rows to aggregate, the function returns a blank. However, if
there are rows, but none of them meet the specified criteria, the function returns 0.
Microsoft Excel also returns a zero if no rows are found that meet the conditions.
Example
Description
The following example returns the average of non-blank cells in the referenced column,
given the following table. If you used the AVERAGE function, the mean would be 21/2;
with the AVERAGEA function, the result is 22/5.

 222

Transaction ID Amount Result

0000123 1 Counts as 1

0000124 20 Counts as 20

0000125 n/a Counts as 0

0000126 Counts as 0

0000126 TRUE Counts as 1

Code
=AVERAGEA([Amount])

See Also
AVERAGE
AVERAGEX
Aggregation functions

AVERAGEX Function
Calculates the average (arithmetic mean) of a set of expressions evaluated over a table.
Syntax

AVERAGEX(<table>,<expression>)
Parameters

Term Definition

table Name of a table, or an expression that
specifies the table over which the
aggregation can be performed.

expression An expression with a scalar result, which
will be evaluated for each row of the table
in the first argument.

Return Value
A decimal number.
Remarks

 223

The AVERAGEX function enables you to evaluate expressions for each row of a table, and
then take the resulting set of values and calculate its arithmetic mean. Therefore, the
function takes a table as its first argument, and an expression as the second argument.
In all other respects, AVERAGEX follows the same rules as AVERAGE. You cannot include
non-numeric or null cells. Both the table and expression arguments are required.
When there are no rows to aggregate, the function returns a blank. When there are
rows, but none of them meet the specified criteria, then the function returns 0.
Example
Description
The following example calculates the average freight and tax on each order in the
InternetSales table, by first summing Freight plus TaxAmt in each row, and then
averaging those sums.
Code
=AVERAGEX(InternetSales, InternetSales[Freight]+ InternetSales[TaxAmt])

Comments
If you use multiple operations in the expression used as the second argument, you must
use parentheses to control the order of calculations. For more information, see Basic
DAX Syntax.
See Also
AVERAGE
AVERAGEA
Aggregation functions

COUNT Function
The COUNT function counts the number of cells in a column that contain numbers.
Syntax

COUNT(<column>)
Parameters

Term Definition

column The column that contains the numbers to
be counted

Return Value
A whole number.

 224

Remarks
The only argument allowed to this function is a column. You can use columns containing
any type of data, but only numbers are counted. The COUNT function counts rows that
contain the following kinds of values:
• Numbers
• Dates
If the row contains text that cannot be translated into a number, the row is not counted.
When the function finds no rows to count, it returns a blank. When there are rows, but
none of them meet the specified criteria, then the function returns 0.
Example
Description
The following example shows how to count the number of numeric values in the column,
ShipDate.
Code
=COUNT([ShipDate])

Comments
To count logical values or text, use the COUNTA or COUNTAX functions.
See Also
COUNT
COUNTA
COUNTAX
COUNTX
Aggregation functions

COUNTA Function
The COUNTA function counts the number of cells in a column that are not empty. It
counts not just rows that contain numeric values, but also rows that contain nonblank
values, including text, dates, and logical values.
Syntax

COUNTA(<column>)
Parameters

Term Definition

column The column that contains the values to be
counted

 225

Return Value
A whole number.
Remarks
If you do not need to count cells that contain logical values or text (in other words, if you
want to count only cells that contain numbers), use the COUNT or COUNTX functions.
When the function does not find any rows to count, the function returns a blank. When
there are rows, but none of them meet the specified criteria, then the function returns 0.
Example
Description
The following example returns all rows in the Reseller table that have any kind of value
in the column that stores phone numbers. Because the table name does not contain any
spaces, the quotation marks are optional.
Code
=COUNTA('Reseller'[Phone])

See Also
COUNT
COUNTA
COUNTAX
COUNTX
Aggregation functions

COUNTAX Function
The COUNTAX function counts nonblank results when evaluating the result of an
expression over a table. That is, it works just like the COUNTA function, but is used to
iterate through the rows in a table and count rows where the specified expressions
results in a nonblank result.
Syntax

COUNTAX(<table>,<expression>)
Parameters

Term Definition

table The table containing the rows for which the
expression will be evaluated.

expression The expression to be evaluated for each

 226

Term Definition

row of the table.

Return Value
A whole number.
Remarks
Like the COUNTA function, the COUNTAX function counts cells containing any type of
information, including other expressions.
For example, if the column contains an expression that evaluates to an empty string, the
COUNTAX function treats that result as nonblank. Usually the COUNTAX function does
not count empty cells but in this case the cell contains a formula, so it is counted.
If you do not need to count logical values or text, use the COUNTX function instead.
Whenever the function finds no rows to aggregate, the function returns a blank.
However, if there are rows, but none of them meet the specified criteria, the function
returns 0. Microsoft Excel also returns 0 if no rows are found that meet the condition.
Example
Description
The following example counts the number of nonblank rows in the column, Phone, using
the table that results from filtering the Reseller table on [Status] = Active.
Code
=COUNTAX(FILTER('Reseller',[Status]="Active"),[Phone])

See Also
COUNT
COUNTA
COUNTAX
COUNTX
Aggregation functions

COUNTBLANK Function
Counts the number of blank cells in a column.
Syntax

COUNTBLANK(<column>)
Parameters

 227

Term Definition

column The column that contains the blank cells to
be counted.

Return Value
A whole number. If no rows are found that meet the condition, blanks are returned.
Remarks
The only argument allowed to this function is a column. You can use columns containing
any type of data, but only blank cells are counted. Cells that have the value zero (0) are
not counted, as zero is considered a numeric value and not a blank.
Whenever there are no rows to aggregate, the function returns a blank. However, if
there are rows, but none of them meet the specified criteria, the function returns 0.
Microsoft Excel also returns a zero if no rows are found that meet the conditions.
In other words, if the COUNTBLANK function finds no blanks, the result will be zero, but
if there are no rows to check, the result will be blank.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following example shows how to count the number of rows in the table Reseller that
have blank values for BankName.
Code
=COUNTBLANK(Reseller[BankName])

Comments
To count logical values or text, use the COUNTA or COUNTAX functions.
See Also
COUNT
COUNTA
COUNTAX
COUNTX
Aggregation functions

COUNTROWS Function
The COUNTROWS function counts the number of rows in the specified table, or in a
table defined by an expression.

http://go.microsoft.com/fwlink/?LinkId=219172�

 228

Syntax

COUNTROWS(<table>)
Parameters

Term Definition

table The name of the table that contains the
rows to be counted, or an expression that
returns a table.

Return Value
A whole number.
Remarks
This function can be used to count the number of rows in a base table, but more often is
used to count the number of rows that result from filtering a table, or applying context
to a table.
Whenever there are no rows to aggregate, the function returns a blank. However, if
there are rows, but none of them meet the specified criteria, the function returns 0.
Microsoft Excel also returns a zero if no rows are found that meet the conditions.
Example
Description
The following example shows how to count the number of rows in the table Orders. The
expected result is 52761.
Code
=COUNTROWS('Orders')

Example
Description
The following example demonstrates how to use COUNTROWS with a row context. In
this scenario, there are two sets of data that are related by order number. The table
Reseller contains one row for each reseller; the table ResellerSales contains multiple rows
for each order, each row containing one order for a particular reseller. The tables are
connected by a relationship on the column, ResellerKey.
The formula gets the value of ResellerKey and then counts the number of rows in the
related table that have the same reseller ID. The result is output in the column,
CalculatedColumn1.
Code
=COUNTROWS(RELATEDTABLE(ResellerSales))

 229

Comments
The following table shows a portion of the expected results:

ResellerKey CalculatedColumn1

1 73

2 70

3 394

See Also
COUNT
COUNTA
COUNTAX
COUNTX
Aggregation functions

COUNTX Function
Counts the number of rows that contain a number or an expression that evaluates to a
number, when evaluating an expression over a table.
Syntax

COUNTX(<table>,<expression>)
Parameters

Term Definition

table The table containing the rows to be
counted.

expression An expression that returns the set of values
that contains the values you want to count.

Return Value
An integer.
Remarks

 230

The COUNTX function takes two arguments. The first argument must always be a table,
or any expression that returns a table. The second argument is the column or expression
that is searched by COUNTX.
The COUNTX function counts only numeric values, or dates. Arguments that are logical
values or text that cannot be translated into numbers are not counted. If the function
finds no rows to count, it returns a blank. When there are rows, but none meets the
specified criteria, then the function returns 0.
If you want to count logical values, or text, use the COUNTA or COUNTAX functions.
Example
Description
The following formula returns a count of all rows in the Product table that have a list
price.
Code
=COUNTX(Product,[ListPrice])

Example
Description
The following formula illustrates how to pass a filtered table to COUNTX for the first
argument. The formula uses a filter expression to get only the rows in the Product table
that meet the condition, ProductSubCategory = "Caps", and then counts the rows in the
resulting table that have a list price. The FILTER expression applies to the table Products
but uses a value that you look up in the related table, ProductSubCategory.
Code
=COUNTX(FILTER(Product,RELATED(ProductSubcategory[EnglishProductSubcate

goryName])="Caps", Product[ListPrice])

See Also
COUNT
COUNTA
COUNTAX
COUNTX
Aggregation functions

CROSSJOIN Function
Returns a table that contains the Cartesian product of all rows from all tables in the
arguments. The columns in the new table are all the columns in all the argument tables.
Syntax
CROSSJOIN(<table>, <table>[, <table>]…)
Parameters

 231

Parameter Description

 Any DAX expression that returns a
table of data

Return Value
A table that contains the Cartesian product of all rows from all tables in the arguments.
Remarks
• Column names from table arguments must all be different in all tables or an error is

returned.
• The total number of rows returned by CROSSJOIN() is equal to the product of the

number of rows from all tables in the arguments; also, the total number of columns
in the result table is the sum of the number of columns in all tables. For example, if
TableA has rA rows and cA columns, and TableB has rB rows and cB columns, and
TableC has rC rows and cC column; then, the resulting table has rA × rb × rC rows
and cA + cB + cC columns.

Example
Description
The following example shows the results of applying CROSSJOIN() to two tables: Colors
and Stationery.
The table Colors contains colors and patterns:

Color Pattern

Red Horizontal Stripe

Green Vertical Stripe

Blue Crosshatch

The table Stationery contains fonts and presentation:

Font Presentation

serif embossed

sans-serif engraved

The expression to generate the cross join is presented below:

 232

Code
CROSSJOIN(Colors, Stationery)

Comments
When the above expression is used wherever a table expression is expected, the results
of the expression would be as follows:

Red Horizontal Stripe serif embossed

Green Vertical Stripe serif embossed

Blue Crosshatch serif embossed

Red Horizontal Stripe sans-serif engraved

Green Vertical Stripe sans-serif engraved

Blue Crosshatch sans-serif engraved

DISTINCTCOUNT Function
The DISTINCTCOUNT function counts the number of different cells in a column of
numbers.
Syntax
DISTINCTCOUNT(<column>)
Parameters

Parameter Description

 The column that contains the
numbers to be counted

Return Value
The number of distinct values in column.
Remarks
The only argument allowed to this function is a column. You can use columns containing
any type of data. When the function finds no rows to count, it returns a BLANK,
otherwise it returns the count of distinct values.
Example
Description

 233

The following example shows how to count the number of distinct sales orders in the
column ResellerSales_USD[SalesOrderNumber].
Code
=DISTINCTCOUNT(ResellerSales_USD[SalesOrderNumber])

Comments
Using the above measure in a table with calendar year in the side and product category
on top gives the following results:

Distinct
Reseller
Orders
count

Column
Labels

Row
Labels

Accessories Bikes Clothing Components Grand
Total

2005 135 345 242 205 366

2006 356 850 644 702 1015

2007 531 1234 963 1138 1521

2008 293 724 561 601 894

 1 1

Grand
Total

1315 3153 2410 2646 1 3797

In the above example the user should be able to note that the rows Grand Total numbers
do not add up, this happens because the same order might contain line items, in the
same order, from different product categories.
See Also
COUNT
COUNTA
COUNTAX
COUNTX
Aggregation functions

GENERATE Function
Returns a table with the Cartesian product between each row in table1 and the table that
results from evaluating table2 in the context of the current row from table1.

 234

Syntax
GENERATE(<table1>, <table2>)
Parameters

Parameter Description

 Any DAX expression that returns a
table.

 Any DAX expression that returns a
table.

Return Value
A table with the Cartesian product between each row in table1 and the table that results
from evaluating table2 in the context of the current row from table1
Remarks
• If the evaluation of table2 for the current row in table1 returns an empty table, then

the result table will not contain the current row from table1. This is different than
GENERATEALL() where the current row from table1 will be included in the results and
columns corresponding to table2 will have null values for that row.

• All column names from table1 and table2 must be different or an error is returned.
Example
Description
In the following example the user wants a summary table of the sales by Region and
Product Category for the Resellers channel, like the following table:

SalesTerritory[SalesTerritoryGrou
p]

ProductCategory[ProductCategoryNam
e]

 [Reseller
Sales]

Europe Accessories $
142,227.27

Europe Bikes $
9,970,200.44

Europe Clothing $
365,847.63

Europe Components $
2,214,440.19

North America Accessories $

 235

379,305.15

North America Bikes $
52,403,796.8
5

North America Clothing $
1,281,193.26

North America Components $
8,882,848.05

Pacific Accessories $
12,769.57

Pacific Bikes $
710,677.75

Pacific Clothing $
22,902.38

Pacific Components $
108,549.71

The following code produces the above table:
Code
GENERATE(

SUMMARIZE(SalesTerritory, SalesTerritory[SalesTerritoryGroup])

,SUMMARIZE(ProductCategory

, [ProductCategoryName]

, "Reseller Sales", SUMX(RELATEDTABLE(ResellerSales_USD),

ResellerSales_USD[SalesAmount_USD])

)

)

Comments
1. The first SUMMARIZE statement, SUMMARIZE(SalesTerritory,

SalesTerritory[SalesTerritoryGroup]), produces a table of territory groups,
where each row is a territory group, as shown below:

 236

SalesTerritory[SalesTerritoryGroup]

North America

Europe

Pacific

NA

2. The second SUMMARIZE statement, SUMMARIZE(ProductCategory,

[ProductCategoryName], "Reseller Sales",

SUMX(RELATEDTABLE(ResellerSales_USD),
ResellerSales_USD[SalesAmount_USD])), produces a table of Product Category
groups with the Reseller sales for each group, as shown below:

ProductCategory[ProductCategoryName] [Reseller Sales]

Bikes $ 63,084,675.04

Components $ 11,205,837.96

Clothing $ 1,669,943.27

Accessories $ 534,301.99

3. However, when you take the above table and evaluate it under the context of each

row from the territory groups table, you obtain different results for each territory.

GENERATEALL Function
Returns a table with the Cartesian product between each row in table1 and the table that
results from evaluating table2 in the context of the current row from table1.
Syntax
GENERATEALL(<table1>, <table2>)
Parameters

Parameter Description

 Any DAX expression that returns a
table.

 Any DAX expression that returns a
table.

 237

Return Value
A table with the Cartesian product between each row in table1 and the table that results
from evaluating table2 in the context of the current row from table1
Remarks
• If the evaluation of table2 for the current row in table1 returns an empty table, then

the current row from table1 will be included in the results and columns
corresponding to table2 will have null values for that row. This is different than
GENERATE() where the current row from table1 will not be included in the results.

• All column names from table1 and table2 must be different or an error is returned.
Example
Description
In the following example, the user wants a summary table of the sales by Region and
Product Category for the Resellers channel, like the following table:

SalesTerritory[SalesTerritoryGroup] ProductCategory[ProductCategoryName] [Reseller Sales]

Europe Accessories $
142,227.27

Europe Bikes $
9,970,200.44

Europe Clothing $
365,847.63

Europe Components $
2,214,440.19

NA Accessories

NA Bikes

NA Clothing

NA Components

North America Accessories $
379,305.15

North America Bikes $
52,403,796.85

North America Clothing $
1,281,193.26

 238

SalesTerritory[SalesTerritoryGroup] ProductCategory[ProductCategoryName] [Reseller Sales]

North America Components $
8,882,848.05

Pacific Accessories $
12,769.57

Pacific Bikes $
710,677.75

Pacific Clothing $
22,902.38

Pacific Components $
108,549.71

The following code produces the above table:
Code
GENERATEALL(

SUMMARIZE(SalesTerritory, SalesTerritory[SalesTerritoryGroup])

,SUMMARIZE(ProductCategory

, [ProductCategoryName]

, "Reseller Sales", SUMX(RELATEDTABLE(ResellerSales_USD),

ResellerSales_USD[SalesAmount_USD])

)

)

Comments
1. The first SUMMARIZE produces a table of territory groups, where each row is a

territory group, like those listed below:

SalesTerritory[SalesTerritoryGroup]

North America

Europe

Pacific

NA

 239

2. The second SUMMARIZE produces a table of Product Category groups with the
Reseller sales for each group, as shown below:

ProductCategory[ProductCategoryName] [Reseller Sales]

Bikes $ 63,084,675.04

Components $ 11,205,837.96

Clothing $ 1,669,943.27

Accessories $ 534,301.99

3. However, when you take the above table and evaluate the table under the context of

each row from the territory groups table, you obtain different results for each
territory.

MAX Function
Returns the largest numeric value in a column.
Syntax

MAX(<column>)
Parameters

Term Definition

column The column in which you want to find the
largest numeric value.

Property Value/Return Value
A decimal number.
Remarks
The MAX function takes as an argument a column that contains numeric values. If the
column contains no numbers, MAX returns a blank. If you want to evaluate values that
are not numbers, use the MAXA function.
Example
Description
The following example returns the largest value found in the ExtendedAmount column of
the InternetSales table.

 240

Code
=MAX(InternetSales[ExtendedAmount])

See Also
MAX
MAXA
MAXX
Aggregation functions

MAXA Function
Returns the largest value in a column. Logical values and blanks are counted.
Syntax

MAXA(<column>)
Parameters

Term Definition

column The column in which you want to find the
largest value.

Return Value
A decimal number.
Remarks
The MAXA function takes as argument a column, and looks for the largest value among
the following types of values:
• Numbers
• Dates
• Logical values, such as TRUE and FALSE. Rows that evaluate to TRUE count as 1; rows

that evaluate to FALSE count as 0 (zero).
Empty cells are ignored. If the column contains no values that can be used, MAXA
returns 0 (zero).
If you do not want to include logical values and blanks as part of the calculation, use the
MAX function.
Example
Description

 241

The following example returns the greatest value from a calculated column, named
ResellerMargin, that computes the difference between list price and reseller price.
Code
=MAXA([ResellerMargin])

Example
Description
The following example returns the largest value from a column that contains dates and
times. Therefore, this formula gets the most recent transaction date.
Code
=MAXA([TransactionDate])

See Also
MAX
MAXA
MAXX
Aggregation functions

MAXX Function
Evaluates an expression for each row of a table and returns the largest numeric value.
Syntax

MAXX(<table>,<expression>)
Parameters

Term Definition

table The table containing the rows for which the
expression will be evaluated.

expression The expression to be evaluated for each
row of the table.

Return Value
A decimal number.
Remarks
The table argument to the MAXX function can be a table name, or an expression that
evaluates to a table. The second argument indicates the expression to be evaluated for
each row of the table.

 242

Of the values to evaluate, only the following are counted:
• Numbers. If the expression does not evaluate to a number, MAXX returns 0 (zero).
• Dates.
Empty cells, logical values, and text values are ignored. If you want to include non-
numeric values in the formula, use the MAXA function.
If a blank cell is included in the column or expression, MAXX returns an empty column.
Example
Description
The following formula uses an expression as the second argument to calculate the total
amount of taxes and shipping for each order in the table, InternetSales. The expected
result is 375.7184.
Code
=MAXX(InternetSales, InternetSales[TaxAmt]+ InternetSales[Freight])

Example
Description
The following formula first filters the table InternetSales, by using a FILTER expression, to
return a subset of orders for a specific sales region, defined as [SalesTerritory] = 5. The
MAXX function then evaluates the expression used as the second argument for each row
of the filtered table, and returns the highest amount for taxes and shipping for just those
orders. The expected result is 250.3724.
Code
=MAXX(FILTER(InternetSales,[SalesTerritoryCode]="5"),

InternetSales[TaxAmt]+ InternetSales[Freight])

See Also
MAX
MAXA
MAXX
Aggregation functions

MIN Function
Returns the smallest numeric value in a column. Ignores logical values and text.
Syntax

MIN(<column>)
Parameters

 243

Term Definition

column The column in which you want to find the
smallest numeric value.

Return Value
A decimal number.
Remarks
The MIN function takes a column as an argument, and returns the smallest numeric value
in the column. The following types of values in the columns are counted:
• Numbers
• Dates
• If the column contains no numerical data, MIN returns blanks.
Empty cells, logical values, and text are ignored. If you want to include logical values and
text representations of numbers in a reference as part of the calculation, use the MINA
function.
Example
Description
The following example returns the smallest value from the calculated column,
ResellerMargin.
Code
=MIN([ResellerMargin])

Example
Description
The following example returns the smallest value from a column that contains dates and
times, TransactionDate. This formula therefore returns the date that is earliest.
Code
=MIN([TransactionDate])

See Also
MIN
MINA
MINX
Aggregation functions

MINA Function
Returns the smallest value in a column, including any logical values and numbers
represented as text.

 244

Syntax

MINA(<column>)
Parameters

Term Definition

column The column for which you want to find the
minimum value.

Return Value
A decimal number.
Remarks
The MINA function takes as argument a column that contains numbers, and determines
the smallest value as follows:
• If the column contains no numeric values, MINA returns 0 (zero).
• Rows in the column that evaluates to logical values, such as TRUE and FALSE are

treated as 1 if TRUE and 0 (zero) if FALSE.
• Empty cells are ignored.
If you do not want to include logical values and text as part of the calculation, use the
MIN function instead.
Example
Description
The following expression returns the minimum freight charge from the table,
InternetSales.
Code
=MINA(InternetSales[Freight])

Example
Description
The following expression returns the minimum value in the column, PostalCode. Because
the data type of the column is text, the function does not find any numeric values, and
the formula returns zero (0).
Code
=MINA([PostalCode])

See Also
MIN
MINA

 245

MINX
Aggregation functions

MINX Function
Returns the smallest numeric value that results from evaluating an expression for each
row of a table.
Syntax

MINX(<table>, < expression>)
Parameters

Term Definition

table The table containing the rows for which the
expression will be evaluated.

expression The expression to be evaluated for each
row of the table.

Return Value
A decimal number.
Remarks
The MINX function takes as its first argument a table, or an expression that returns a
table. The second argument contains the expression that is evaluated for each row of the
table.
The MINX function evaluates the results of the expression in the second argument
according to the following rules:
• Only numbers are counted. If the expression does not result in a number, MINX

returns 0 (zero).
• Empty cells, logical values, and text values are ignored. Numbers represented as text

are treated as text.
If you want to include logical values and text representations of numbers in a reference
as part of the calculation, use the MINA function.
Example
Description
The following example filters the table, InternetSales, and returns only rows for a specific
sales territory. The formula then finds the minimum value in the column, Freight.
Code

 246

=MINX(FILTER(InternetSales, [SalesTerritoryKey] = 5),[Freight])

Example
Description
The following example uses the same filtered table as in the previous example, but
instead of merely looking up values in the column for each row of the filtered table, the
function calculates the sum of two columns, Freight and TaxAmt, and returns the
smallest value resulting from that calculation.
Code
=MINX(FILTER(InternetSales, InternetSales[SalesTerritoryKey] = 5),

InternetSales[Freight] + InternetSales[TaxAmt])

Comments
In the first example, the names of the columns are unqualified. In the second example,
the column names are fully qualified.
See Also
MIN
MINA
MINX
Aggregation functions

RANK.EQ Function
Returns the ranking of a number in a list of numbers.
Syntax
RANK.EQ(<value>, <columnName>[, <order>])
Parameters

Parameter Description

 Any DAX expression that returns a
single scalar value whose rank is to
be found. The expression is to be
evaluated exactly once, before the
function is evaluated, and it’s value
passed to the argument list.

 The name of an existing column
against which ranks will be
determined. It cannot be an
expression or a column created
using these functions:

 247

ADDCOLUMNS, ROW or
SUMMARIZE.

 (Optional) A value that specifies
how to rank number, low to high or
high to low:

value alternate
value

Description

0 (zero) FALSE Ranks in
descending
order of
columnName. If
value is equal to
the highest
number in
columnName
then RANK.EQ
is 1.

1 TRUE Ranks in
ascending order
of columnName.
If value is equal
to the lowest
number in
columnName
then RANK.EQ
is 1.

Return Value
A number indicating the rank of value among the numbers in columnName.
Exceptions

Remarks
• columnName cannot refer to any column created using these functions:

ADDCOLUMNS, ROW or SUMMARIZE.I
• If value is not in columnName or value is a blank, then RANK.EQ returns a blank

value.

 248

• Duplicate values of value receive the same rank value; the next rank value assigned
will be the rank value plus the number of duplicate values. For example if five (5)
values are tied with a rank of 11 then the next value will receive a rank of 16 (11 + 5).

Example
Description
The following example creates a calculated column that ranks the values in
SalesAmount_USD, from the InternetSales_USD table, against all numbers in the same
column.
Code
=RANK.EQ(InternetSales_USD[SalesAmount_USD],

InternetSales_USD[SalesAmount_USD])

Comments

Example
Description
The following example ranks a subset of values against a given sample. Assume that you
have a table of local students with their performance in a specific national test and, also,
you have the entire set of scores in that national test. The following calculated column
will give you the national ranking for each of the local students.
Code
=RANK.EQ(Students[Test_Score], NationalScores[Test_Score])

Comments

RANKX Function
Returns the ranking of a number in a list of numbers for each row in the table argument.
Syntax
RANKX(<table>, <expression>[, <value>[, <order>[, <ties>]]][, <expression>[, <value>[,
<order>[, <ties>]]]]…)
Parameters

Parameter Description

 Any DAX expression that returns a
table of data over which the
expression is evaluated.

 Any DAX expression that returns a
single scalar value. The expression

 249

is evaluated for each row of table,
to generate all possible values for
ranking. See the remarks section to
understand the function behavior
when expression evaluates to
BLANK.

 (Optional) Any DAX expression that
returns a single scalar value whose
rank is to be found. See the
remarks section to understand the
function’s behavior when value is
not found in the expression.

When the value parameter is
omitted, the value of expression at
the current row is used instead.

 (Optional) A value that specifies
how to rank value, low to high or
high to low:

value alternate
value

Description

0 (zero) FALSE Ranks in
descending
order of values
of expression.
If value is
equal to the
highest
number in
expression
then RANKX
returns 1.
This is the
default value
when order
parameter is
omitted.

1 TRUE Ranks in
ascending
order of

 250

expression. If
value is equal
to the lowest
number in
expression
then RANKX
returns 1.

 (Optional) An enumeration that
defines how to determine ranking
when there are ties.

enumeration Description

Skip The next rank
value, after a tie, is
the rank value of
the tie plus the
count of tied
values. For
example if five (5)
values are tied with
a rank of 11 then
the next value will
receive a rank of 16
(11 + 5).
This is the default
value when ties
parameter is
omitted.

Dense The next rank
value, after a tie, is
the next rank value.
For example if five
(5) values are tied
with a rank of 11
then the next value
will receive a rank
of 12.

Return Value

 251

The rank number of value among all possible values of expression evaluated for all rows
of table numbers.
Exceptions

Remarks
• If expression or value evaluates to BLANK it is treated as a 0 (zero) for all expressions

that result in a number, or as an empty text for all text expressions.
• If value is not among all possible values of expression then RANKX temporarily adds

value to the values from expression and re-evaluates RANKX to determine the proper
rank of value.

• Optional arguments might be skipped by placing an empty comma (,) in the
argument list, i.e. RANKX(Inventory, [InventoryCost],,,"Dense")

Example
Description
The following calculated column in the Products table calculates the sales ranking for
each product in the Internet channel.
Code
=RANKX(ALL(Products), SUMX(RELATEDTABLE(InternetSales), [SalesAmount]))

Comments

ROW Function
Returns a table with a single row containing values that result from the expressions given
to each column.
Syntax
ROW(<name>, <expression>][,<name>, <expression>]…])
Parameters

Parameter Description

name The name given to the column,
enclosed in double quotes.

expression Any DAX expression that returns a
single scalar value to populate.
name.

Return Value

 252

A single row table
Remarks
Arguments must always come in pairs of name and expression.
Example
Description
The following example returns a single row table with the total sales for internet and
resellers channels.
Code
ROW("Internet Total Sales (USD)",

SUM(InternetSales_USD[SalesAmount_USD]),

 "Resellers Total Sales (USD)",

SUM(ResellerSales_USD[SalesAmount_USD]))

Comments
The code is split in two lines for readability purposes

STDEV.S Function
Returns the standard deviation of a sample population.
Syntax
STDEV.S(<ColumnName>)
Parameters

Parameter Description

columnName The name of an existing column
using standard DAX syntax, usually
fully qualified. It cannot be an
expression.

Return Value
A number that represents the standard deviation of a sample population.
Exceptions

Remarks
1. STDEV.S assumes that the column refers to a sample of the population. If your data

represents the entire population, then compute the standard deviation by using
STDEV.P.

2. STDEV.S uses the following formula:

 253

-)²/(n-1)]

and n is the population size
3. Blank rows are filtered out from columnName and not considered in the calculations.
4. An error is returned if columnName contains less than 2 non-blank rows.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following example shows the formula for a measure that calculates the standard
deviation of the column, SalesAmount_USD, when the table InternetSales_USD is the
sample population.
Code
=STDEV.S(InternetSales_USD[SalesAmount_USD])

STDEV.P Function
Returns the standard deviation of the entire population.
Syntax
STDEV.P(<ColumnName>)
Parameters

Parameter Description

 The name of an existing column
using standard DAX syntax, usually
fully qualified. It cannot be an
expression.

Return Value
A number representing the standard deviation of the entire population.
Exceptions

Remarks
1. STDEV.P assumes that the column refers to the entire population. If your data

represents a sample of the population, then compute the standard deviation by
using STDEV.S.

http://go.microsoft.com/fwlink/?LinkId=219171�

 254

2. STDEV.P uses the following formula:
-)²/n]

pulation
and n is the population size

3. Blank rows are filtered out from columnName and not considered in the calculations.
4. An error is returned if columnName contains less than 2 non-blank rows
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following example shows the formula for a measure that calculates the standard
deviation of the column, SalesAmount_USD, when the table InternetSales_USD is the
entire population.
Code
=STDEV.P(InternetSales_USD[SalesAmount_USD])

STDEVX.S Function
Returns the standard deviation of a sample population.
Syntax
STDEVX.S(<table>, <expression>)
Parameters

Parameter Description

 Any DAX expression that returns a
single scalar value, where the
expression is to be evaluated
multiple times (for each
row/context).

 Any DAX expression that returns a
single scalar value, where the
expression is to be evaluated
multiple times (for each
row/context).

Return Value
A number with the standard deviation of a sample population.

http://go.microsoft.com/fwlink/?LinkId=219171�

 255

Exceptions

Remarks
1. STDEVX.S evaluates expression for each row of table and returns the standard

deviation of expression assuming that table refers to a sample of the population. If
table represents the entire population, then compute the standard deviation by using
STDEVX.P.

2. STDEVX.S uses the following formula:
-)²/(n-1)]

and n is the population size

3. Blank rows are filtered out from columnName and not considered in the calculations.
4. An error is returned if columnName contains less than 2 non-blank rows.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following example shows the formula for a calculated column that estimates the
standard deviation of the unit price per product for a sample population, when the
formula is used in the Product table.
Code
=STDEVX.S(RELATEDTABLE(InternetSales_USD),

InternetSales_USD[UnitPrice_USD] –

(InternetSales_USD[DiscountAmount_USD]/InternetSales_USD[OrderQuantity]

))

STDEVX.P Function
Returns the standard deviation of the entire population.
Syntax
STDEVX.P(<table>, <expression>)
Parameters

Parameter Description

table Any DAX expression that returns a
table of data.

http://go.microsoft.com/fwlink/?LinkId=219171�

 256

expression Any DAX expression that returns a
single scalar value, where the
expression is to be evaluated
multiple times (for each
row/context).

Return Value
A number that represents the standard deviation of the entire population.
Remarks
1. STDEVX.P evaluates expression for each row of table and returns the standard

deviation of expression assuming that table refers to the entire population. If the
data in table represents a sample of the population, you should compute the
standard deviation by using STDEVX.S instead.

2. STDEVX.P uses the following formula:
-)²/n]

and n is the population size

3. Blank rows are filtered out from columnName and not considered in the calculations.
4. An error is returned if columnName contains less than 2 non-blank rows
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following example shows the formula for a calculated column that calculates the
standard deviation of the unit price per product, when the formula is used in the Product
table.
Code
=STDEVX.P(RELATEDTABLE(InternetSales_USD),

InternetSales_USD[UnitPrice_USD] –

(InternetSales_USD[DiscountAmount_USD]/InternetSales_USD[OrderQuantity]

))

SUMMARIZE Function
Returns a summary table for the requested totals over a set of groups.
Syntax

http://go.microsoft.com/fwlink/?LinkId=219171�

 257

SUMMARIZE(<table>, <groupBy_columnName>[, <groupBy_columnName>]…[,
<name>, <expression>]…)
Parameters

Parameter Description

 Any DAX expression that returns a
table of data.

 The qualified name of an existing
column to be used to create
summary groups based on the
values found in it. This parameter
cannot be an expression.

 The name given to a total or
summarize column, enclosed in
double quotes.

 Any DAX expression that returns a
single scalar value, where the
expression is to be evaluated
multiple times (for each
row/context).

Return Value
A table with the selected columns for the groupBy_columnName arguments and the
summarized columns designed by the name arguments.
Remarks
1. Each column for which you define a name must have a corresponding expression;

otherwise, an error is returned. The first argument, name, defines the name of the
column in the results. The second argument, expression, defines the calculation
performed to obtain the value for each row in that column.

2. groupBy_columnName must be either in table or in a related table to table.
3. Each name must be enclosed in double quotation marks.
4. The function groups a selected set of rows into a set of summary rows by the values

of one or more groupBy_columnName columns. One row is returned for each group.
Example
Description
The following example returns a summary of the reseller sales grouped around the
calendar year and the product category name, this result table allows you to do analysis
over the reseller sales by year and product category.

 258

Code
SUMMARIZE(ResellerSales_USD

 , DateTime[CalendarYear]

 , ProductCategory[ProductCategoryName]

 , "Sales Amount (USD)", SUM(ResellerSales_USD[SalesAmount_USD])

 , "Discount Amount (USD)", SUM(ResellerSales_USD[DiscountAmount])

)

Comments
The following table shows a preview of the data as it would be received by any function
expecting to receive a table:

DateTime[CalendarY
ear]

ProductCategory[ProductCategory
Name]

[Sales
Amount
(USD)]

[Discount
Amount
(USD)]

2008 Bikes 12968255.
42

36167.659
2

2005 Bikes 6958251.0
43

4231.1621

2006 Bikes 18901351.
08

178175.83
99

2007 Bikes 24256817.
5

276065.99
2

2008 Components 2008052.7
06

39.9266

2005 Components 574256.98
65

0

2006 Components 3428213.0
5

948.7674

2007 Components 5195315.2
16

4226.0444

2008 Clothing 366507.84
4

4151.1235

2005 Clothing 31851.162
8

90.9593

 259

2006 Clothing 455730.97
29

4233.039

2007 Clothing 815853.28
68

12489.383
5

2008 Accessories 153299.92
4

865.5945

2005 Accessories 18594.478
2

4.293

2006 Accessories 86612.746
3

1061.4872

2007 Accessories 275794.84
03

4756.6546

Advanced SUMMARIZE options
SUMMARIZE with ROLLUP
The addition of the ROLLUP() syntax modifies the behavior of the SUMMARIZE function
by adding roll-up rows to the result on the groupBy_columnName columns.
SUMMARIZE(<table>, <groupBy_columnName>[, <groupBy_columnName>]…[,
ROLLUP(<groupBy_columnName>[,< groupBy_columnName>…])][, <name>,
<expression>]…)
ROLLUP parameters
groupBy_columnName

The qualified name of an existing column to be used to create summary groups based
on the values found in it. This parameter cannot be an expression.

Note: All other SUMMARIZE parameters are explained before and not repeated here for
brevity.
Remarks
• The columns mentioned in the ROLLUP expression cannot be referenced as part of a

groupBy_columnName columns.
Example
The following example adds roll-up rows to the Group-By columns of the SUMMARIZE
function call.

SUMMARIZE(ResellerSales_USD

 , ROLLUP(DateTime[CalendarYear],

ProductCategory[ProductCategoryName])

 , "Sales Amount (USD)", SUM(ResellerSales_USD[SalesAmount_USD])

 260

 , "Discount Amount (USD)", SUM(ResellerSales_USD[DiscountAmount])

)

The following table shows a preview of the data as it would be received by any function
expecting to receive a table:

DateTime[CalendarY
ear]

ProductCategory[ProductCategory
Name]

[Sales
Amount
(USD)]

[Discount
Amount
(USD)]

2008 Bikes 12968255.
42

36167.659
2

2005 Bikes 6958251.0
43

4231.1621

2006 Bikes 18901351.
08

178175.83
99

2007 Bikes 24256817.
5

276065.99
2

2008 Components 2008052.7
06

39.9266

2005 Components 574256.98
65

0

2006 Components 3428213.0
5

948.7674

2007 Components 5195315.2
16

4226.0444

2008 Clothing 366507.84
4

4151.1235

2005 Clothing 31851.162
8

90.9593

2006 Clothing 455730.97
29

4233.039

2007 Clothing 815853.28
68

12489.383
5

2008 Accessories 153299.92
4

865.5945

 261

2005 Accessories 18594.478
2

4.293

2006 Accessories 86612.746
3

1061.4872

2007 Accessories 275794.84
03

4756.6546

2008 15496115.
89

41224.303
8

2005 7582953.6
7

4326.4144

2006 22871907.
85

184419.13
35

2007 30543780.
84

297538.07
45

 76494758.
25

527507.92
62

SUMMARIZE with ISSUBTOTAL
Enables the user to create another column, in the Summarize function, that returns True
if the row contains sub-total values for the column given as argument to ISSUBTOTAL,
otherwise returns False.
SUMMARIZE(<table>, <groupBy_columnName>[, <groupBy_columnName>]…[,
ROLLUP(<groupBy_columnName>[,< groupBy_columnName>…])][, <name>,
{<expression>|ISSUBTOTAL(<columnName>)}]…)
ISSUBTOTAL parameters
columnName

The name of any column in table of the SUMMARIZE function or any column in a related
table to table.

Return Value
A True value if the row contains a sub-total value for the column given as argument,
otherwise returns False
Remarks
• ISSUBTOTAL can only be used in the expression part of a SUMMARIZE function.
• ISSUBTOTAL must be preceded by a matching name column.
Example

 262

The following sample generates an ISSUBTOTAL() column for each of the ROLLUP()
columns in the given SUMMARIZE() function call.

SUMMARIZE(ResellerSales_USD

 , ROLLUP(DateTime[CalendarYear],

ProductCategory[ProductCategoryName])

 , "Sales Amount (USD)", SUM(ResellerSales_USD[SalesAmount_USD])

 , "Discount Amount (USD)", SUM(ResellerSales_USD[DiscountAmount])

 , "Is Sub Total for DateTimeCalendarYear",

ISSUBTOTAL(DateTime[CalendarYear])

 , "Is Sub Total for ProductCategoryName",

ISSUBTOTAL(ProductCategory[ProductCategoryName])

)

The following table shows a preview of the data as it would be received by any function
expecting to receive a table:

[Is Sub Total
for
DateTimeCal
endarYear]

[Is Sub Total
for
ProductCate
goryName]

DateTime[Ca
lendarYear]

ProductCategory[Prod
uctCategoryName]

[Sales
Amou
nt
(USD)
]

[Disco
unt
Amou
nt
(USD)
]

FALSE FALSE

FALSE FALSE 2008 Bikes 12968
255.42

36167.
6592

FALSE FALSE 2005 Bikes 69582
51.043

4231.1
621

FALSE FALSE 2006 Bikes 18901
351.08

17817
5.8399

FALSE FALSE 2007 Bikes 24256
817.5

27606
5.992

FALSE FALSE 2008 Components 20080
52.706

39.926
6

FALSE FALSE 2005 Components 57425
6.9865

0

FALSE FALSE 2006 Components 34282 948.76

 263

13.05 74

FALSE FALSE 2007 Components 51953
15.216

4226.0
444

FALSE FALSE 2008 Clothing 36650
7.844

4151.1
235

FALSE FALSE 2005 Clothing 31851.
1628

90.959
3

FALSE FALSE 2006 Clothing 45573
0.9729

4233.0
39

FALSE FALSE 2007 Clothing 81585
3.2868

12489.
3835

FALSE FALSE 2008 Accessories 15329
9.924

865.59
45

FALSE FALSE 2005 Accessories 18594.
4782

4.293

FALSE FALSE 2006 Accessories 86612.
7463

1061.4
872

FALSE FALSE 2007 Accessories 27579
4.8403

4756.6
546

FALSE TRUE

FALSE TRUE 2008 15496
115.89

41224.
3038

FALSE TRUE 2005 75829
53.67

4326.4
144

FALSE TRUE 2006 22871
907.85

18441
9.1335

FALSE TRUE 2007 30543
780.84

29753
8.0745

TRUE TRUE 76494
758.25

52750
7.9262

TOPN Function
Returns the top N rows of the specified table.

 264

Syntax
TOPN(<n_value>, <table>, <orderBy_expression>, [<order>[, <orderBy_expression>,
[<order>]]…])
Parameters

Parameter Description

 The number of rows to return. It is
any DAX expression that returns a
single scalar value, where the
expression is to be evaluated
multiple times (for each
row/context).

See the remarks section to
understand when the number of
rows returned could possible be
larger than n_value.

See the remarks section to
understand when an empty table is
returned.

 Any DAX expression that returns a
table of data from where to extract
the top ‘n’ rows.

 Any DAX expression where the
result value is used to sort the table
and it is evaluated for each row of
table.

 (Optional) A value that specifies
how to sort orderBy_expression
values, ascending or descending:

value

alternate
value

Description

0 (zero) FALSE Sorts in
descending
order of values
of order_by.
This is the

 265

default value
when order
parameter is
omitted.

1 TRUE Ranks in
ascending
order of
order_by.

Return Value
A table with the top N rows of table or an empty table if n_value is 0 (zero) or less. Rows
are not necessarily sorted in any particular order.
Remarks
• If there is a tie, in order_by values, at the N-th row of the table, then all tied rows are

returned. Then, when there are ties at the N-th row the function might return more
than n rows.

• If n_value is 0 (zero) or less then TOPN returns an empty table.
• TOPN does not guarantee any sort order for the results.
Example
Description
The following sample creates a measure with the sales of the top 10 sold products.
Code
=SUMX(TOPN(10, SUMMARIZE(Product, [ProductKey], “TotalSales”,

SUMX(RELATED(InternetSales_USD[SalesAmount_USD]),

InternetSales_USD[SalesAmount_USD]) +

SUMX(RELATED(ResellerSales_USD[SalesAmount_USD]),

ResellerSales_USD[SalesAmount_USD]))

Comments

VAR.S Function
Returns the variance of a sample population.
Syntax
VAR.S(<columnName>)
Parameters

 266

Parameter Description

 The name of an existing column
using standard DAX syntax, usually
fully qualified. It cannot be an
expression.

Return Value
A number with the variance of a sample population.
Exceptions

Remarks
1. VAR.S assumes that the column refers to a sample of the population. If your data

represents the entire population, then compute the variance by using VAR.P.
2. VAR.S uses the following formula:

-)²/(n-1)

and n is the population size
3. Blank rows are filtered out from columnName and not considered in the calculations.
4. An error is returned if columnName contains less than 2 non-blank rows.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following example shows the formula for a measure that calculates the variance of
the SalesAmount_USD column from the InternetSales_USD for a sample population.
Code
=VAR.S(InternetSales_USD[SalesAmount_USD])

VAR.P Function
Returns the variance of the entire population.
Syntax
VAR.P(<columnName>)
Parameters

Parameter Description

http://go.microsoft.com/fwlink/?LinkId=219171�

 267

 The name of an existing column
using standard DAX syntax, usually
fully qualified. It cannot be an
expression.

Return Value
A number with the variance of the entire population.
Remarks
1. VAR.P assumes that the column refers the entire population. If your data represents a

sample of the population, then compute the variance by using VAR.S.
2. VAR.P uses the following formula:

-)²/n
entire population

and n is the population size
3. Blank rows are filtered out from columnName and not considered in the calculations.
4. An error is returned if columnName contains less than 2 non-blank rows
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following example shows the formula for a measure that estimates the variance of
the SalesAmount_USD column from the InternetSales_USD table, for the entire
population.
Code
=VAR.P(InternetSales_USD[SalesAmount_USD])

VARX.S Function
Returns the variance of a sample population.
Syntax
VARX.S(<table>, <expression>)
Parameters

Parameter Description

 Any DAX expression that returns a
table of data.

http://go.microsoft.com/fwlink/?LinkId=219171�

 268

 Any DAX expression that returns a
single scalar value, where the
expression is to be evaluated
multiple times (for each
row/context).

Return Value
A number that represents the variance of a sample population.
Exceptions

Remarks
1. VARX.S evaluates expression for each row of table and returns the variance of

expression; on the assumption that table refers to a sample of the population. If table
represents the entire population, then you should compute the variance by using
VARX.P.

2. VAR.S uses the following formula:
-)²/(n-1)

and n is the population size

3. Blank rows are filtered out from columnName and not considered in the calculations.
4. An error is returned if columnName contains less than 2 non-blank rows.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following example shows the formula for a calculated column that estimates the
variance of the unit price per product for a sample population, when the formula is used
in the Product table.
Code
=VARX.S(InternetSales_USD, InternetSales_USD[UnitPrice_USD] –

(InternetSales_USD[DiscountAmount_USD]/InternetSales_USD[OrderQuantity]

))

VARX.P Function
Returns the variance of the entire population.
Syntax

http://go.microsoft.com/fwlink/?LinkId=219171�

 269

VARX.P(<table>, <expression>)
Parameters

Parameter Description

table Any DAX expression that returns a
table of data.

expression Any DAX expression that returns a
single scalar value, where the
expression is to be evaluated
multiple times (for each
row/context).

Return Value
A number with the variance of the entire population.
Exceptions

Remarks
1. VARX.P evaluates <expression> for each row of <table> and returns the variance of

<expression> assuming that <table> refers to the entire population.. If <table>
represents a sample of the population, then compute the variance by using VARX.S.

2. VARX.P uses the following formula:
-)²/n

and n is the population size

3. Blank rows are filtered out from columnName and not considered in the calculations.
4. An error is returned if columnName contains less than 2 non-blank rows
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following example shows the formula for a calculated column that calculates the
variance of the unit price per product, when the formula is used in the Product table
Code
=VARX.P(InternetSales_USD, InternetSales_USD[UnitPrice_USD] –

(InternetSales_USD[DiscountAmount_USD]/InternetSales_USD[OrderQuantity]

))

http://go.microsoft.com/fwlink/?LinkId=219171�

 270

Text Functions
Data Analysis Expressions (DAX) includes a set of text functions that is based on the
library of string functions in Excel, but which has been modified to work with tables and
columns. This section lists all text functions available in the DAX language.

In this Section
BLANK Function (DAX)
CONCATENATE Function (DAX)
EXACT Function (DAX)
FIND Function (DAX)
FIXED Function (DAX)
FORMAT Function (DAX)
• Pre-defined numeric formats for the FORMAT function (DAX)
• Custom numeric formats for the FORMAT function (DAX)
• Pre-defined Date and Time formats for the FORMAT function (DAX)
• Custom Date and Time formats for the FORMAT function (DAX)
LEFT Function (DAX)
LEN Function (DAX)
LOWER Function (DAX)
MID Function (DAX)
REPLACE Function (DAX)
REPT Function (DAX)
RIGHT Function (DAX)
SEARCH Function (DAX)
SUBSTITUTE Function (DAX)
TRIM Function (DAX)
UPPER Function (DAX)
VALUE Function (DAX)

See Also
Function Reference (DAX)
Date and Time Functions (DAX)
Filter and Value Functions (DAX)
Information Functions (DAX)
Logical Functions (DAX)
Math and Trigonometric Functions (DAX)
Statistical Functions (DAX)

 271

Time Intelligence Functions (DAX)

BLANK Function
Returns a blank.
Syntax

BLANK()
Return Value
A blank.
Remarks
Blanks are not equivalent to nulls. DAX uses blanks for both database nulls and for blank
cells in Excel. For more information, see Data Types in DAX.
Some DAX functions treat blank cells somewhat differently from Microsoft Excel. Blanks
and empty strings ("") are not always equivalent, but some operations may treat them as
such. For details on the behavior of an individual function or operator, see Function
Reference.
Example
Description
The following example illustrates how you can work with blanks in formulas. The formula
calculates the ratio of sales between the Resellers and the Internet channels. However,
before attempting to calculate the ratio the denominator should be checked for zero
values. If the denominator is zero then a blank value should be returned; otherwise, the
ratio is calculated.
Code
=IF(SUM(InternetSales_USD[SalesAmount_USD])= 0 , BLANK() ,

SUM(ResellerSales_USD[SalesAmount_USD])/SUM(InternetSales_USD[SalesAmou

nt_USD]))

Comments
The table shows the expected results when this formula is used to create a PivotTable.

Reseller to
Internet sales
ratio

Column Labels

Row Labels Accessories Bikes Clothing Grand Total

2005 2.65 2.89

2006 3.33 4.03

http://msdn.microsoft.com/en-us/library/48f23cba-07df-4a0e-b077-8ffccd344552(SQL.110)�

 272

Reseller to
Internet sales
ratio

Column Labels

2007 1.04 2.92 6.63 3.51

2008 0.41 1.53 2.00 1.71

Grand Total 0.83 2.51 5.45 2.94

Note that, in the original data source, the column evaluated by the BLANK function
might have included text, empty strings, or nulls. If the original data source was a SQL
Server database, nulls and empty strings are different kinds of data. However, for this
operation an implicit type cast is performed and DAX treats them as the same.
See Also
Text Functions
ISBLANK

CONCATENATE Function
Joins two text strings into one text string.
Syntax

CONCATENATE(<text1>, <text2>)
Parameters

Term Definition

text1, text2 The text strings to be joined into a single
text string. Strings can include text or
numbers.
You can also use column references.

Return Value
The concatenated string.
Remarks
The CONCATENATE function joins two text strings into one text string. The joined items
can be text, numbers or Boolean values represented as text, or a combination of those
items. You can also use a column reference if the column contains appropriate values.

 273

The CONCATENATE function in DAX accepts only two arguments, whereas the Excel
CONCATENATE function accepts up to 255 arguments. If you need to concatenate
multiple columns, you can create a series of calculations or, better, use the concatenation
operator (&) to join all of them in a simpler expression.
If you want to use text strings directly, rather than using a column reference, you must
enclose each string in double quotation marks.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example: Concatenation of Literals
Description
The sample formula creates a new string value by combining two string values that you
provide as arguments.
Code
=CONCATENATE("Hello ", "World")
Example: Concatenation of Strings in Columns
Description
The sample formula returns the customer's full name as listed in a phone book. Note
how a nested function is used as the second argument. This is one way to concatenate
multiple strings, when you have more than two values that you want to use as
arguments.
Code
=CONCATENATE(Customer[LastName], CONCATENATE(", ",
Customer[FirstName]))
Example: Conditional Concatenation of Strings in Columns
Description
The sample formula creates a new calculated column in the Customer table with the full
customer name as a combination of first name, middle initial, and last name. If there is
no middle name, the last name comes directly after the first name. If there is a middle
name, only the first letter of the middle name is used and the initial letter is followed by
a period.
Code
=CONCATENATE([FirstName]&" ", CONCATENATE(IF(LEN([MiddleName])>1,
LEFT([MiddleName],1)&" ", ""), [LastName]))
Comments
This formula uses nested CONCATENATE and IF functions, together with the ampersand
(&) operator, to conditionally concatenate three string values and add spaces as
separators.
Example: Concatenation of Columns with Different Data Types

http://go.microsoft.com/fwlink/?LinkId=219171�

 274

The following example demonstrates how to concatenate values in columns that have
different data types. If the value that you are concatenating is numeric, the value will be
implicitly converted to text. If both values are numeric, both values will be cast to text
and concatenated as if they were strings.

Product description Product abbreviation
(column 1 of composite
key)

Product number
(column 2 of
composite key)

New generated key
column

Mountain bike MTN 40 MTN40

Mountain bike MTN 42 MTN42

Code
=CONCATENATE('Products'[Product abbreviation],'Products'[Product

number])

Comments
The CONCATENATE function in DAX accepts only two arguments, whereas the Excel
CONCATENATE function accepts up to 255 arguments. If you need to add more
arguments, you can use the ampersand (&) operator. For example, the following formula
produces the results, MTN-40 and MTN-42.
=[Product abbreviation] & "-" & [Product number]

See Also
Text functions

EXACT Function
Compares two text strings and returns TRUE if they are exactly the same, FALSE
otherwise. EXACT is case-sensitive but ignores formatting differences. You can use
EXACT to test text being entered into a document.
Syntax

EXACT(<text1>,<text2>)
Parameters

Term Definition

text1 The first text string or column that contains
text.

 275

Term Definition

text2 The second text string or column that
contains text.

Property Value/Return Value
True or false. (Boolean)
Example
Description
The following formula checks the value of Column1 for the current row against the value
of Column2 for the current row, and returns TRUE if they are the same, and returns
FALSE if they are different.
Code
=EXACT([Column1],[Column2])

See Also
Text functions

FIND Function
Returns the starting position of one text string within another text string. FIND is case-
sensitive.
Syntax

FIND(<find_text>, <within_text>[, [<start_num>][, <NotFoundValue>]])
Parameters

Term Definition

find_text The text you want to find. Use double
quotes (empty text) to match the first
character in within_text.
You can use wildcard characters — the
question mark (?) and asterisk (*) — in
find_text. A question mark matches any
single character; an asterisk matches any
sequence of characters. If you want to find
an actual question mark or asterisk, type a
tilde (~) before the character.

within_text The text containing the text you want to

 276

Term Definition

find.

start_num (optional) The character at which to start
the search; if omitted, start_num = 1. The
first character in within_text is character
number 1.

NotFoundValue (optional) The value that should be
returned when the operation does not find
a matching substring, typically 0, -1, or
BLANK().

Property Value/Return Value
Number that shows the starting point of the text string you want to find.
Remarks
Whereas Microsoft Excel has multiple versions of the FIND function to accommodate
single-byte character set (SBCS) and double-byte character set (DBCS) languages, DAX
uses Unicode and counts each character the same way; therefore, you do not need to
use a different version depending on the character type.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following formula finds the position of the first letter of the product designation,
BMX, in the string that contains the product description.
Code
=FIND("BMX","line of BMX racing goods")

See Also
Text functions

FIXED Function
Rounds a number to the specified number of decimals and returns the result as text. You
can specify that the result be returned with or without commas.
Syntax

FIXED(<number>, <decimals>, <no_commas>)

http://go.microsoft.com/fwlink/?LinkId=219171�

 277

Parameters

Term Definition

number The number you want to round and
convert to text, or a column containing a
number.

decimals (optional) The number of digits to the right
of the decimal point; if omitted, 2.

no_commas (optional) A logical value: if 1, do not
display commas in the returned text; if 0 or
omitted, display commas in the returned
text.

Property Value/Return Value
A number represented as text.
Remarks
If the value used for the decimals parameter is negative, number is rounded to the left
of the decimal point.
If you omit decimals, it is assumed to be 2.
If no_commas is 0 or is omitted, then the returned text includes commas as usual.
The major difference between formatting a cell containing a number by using a
command and formatting a number directly with the FIXED function is that FIXED
converts its result to text. A number formatted with a command from the formatting
menu is still a number.
This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
Example
Description
The following example gets the numeric value for the current row in column, PctCost,
and returns it as text with 4 decimal places and no commas.
Code
=FIXED([PctCost],3,1)

Comments
Numbers can never have more than 15 significant digits, but decimals can be as large as
127.
See Also

http://go.microsoft.com/fwlink/?LinkId=219172�

 278

Text functions
Math and trig functions

FORMAT Function
Converts a value to text according to the specified format.
Syntax

FORMAT(<value>, <format_string>)
Parameters

Term Definition

value A value or expression that evaluates to a
single value.

format_string A string with the formatting template.

Return Value
A string containing value formatted as defined by format_string.

• If value is BLANK() the function returns an empty string.
• If format_string is BLANK(), the value is formatted with a "General Number" or

"General Date" format (according to value type).
Remarks
For information on how to use the format_string parameter, see the appropriate topic
listed below:

To Format Follow these instructions

Numbers Use predefined numeric formats or
create user-defined numeric formats.

Dates and times Use predefined date/time formats or
create user-defined date/time formats.

All predefined formatting strings use the current user locale when formatting the result.

Important

Caution

 279

The format strings supported as an argument to the DAX FORMAT function are
based on the format strings used by Visual Basic (OLE Automation), not on the
format strings used by the .NET Framework. Therefore, you might get unexpected
results or an error if the argument does not match any defined format strings. For
example, “p” as an abbreviation for “Percent” is not supported. Strings that you
provide as an argument to the FORMAT function that are not included in the list
of predefined format strings are handled as part of a custom format string, or as
a string literal.

This DAX function is not supported for use in DirectQuery mode. For more information
about limitations in DirectQuery models,
see http://go.microsoft.com/fwlink/?LinkId=219172.
See Also
predefined numeric formats
user-defined numeric formats
predefined date/time formats
user-defined date/time formats
VALUE

Pre-Defined Numeric Formats for the FORMAT Function
The following table identifies the predefined numeric format names. These may be used
by name as the style argument for the Format function.

Format specification Description

"General Number" Displays number with no thousand
separators.

"Currency" Displays number with thousand separators,
if appropriate; displays two digits to the
right of the decimal separator. Output is
based on system locale settings.

"Fixed" Displays at least one digit to the left and
two digits to the right of the decimal
separator.

"Standard" Displays number with thousand separators,
at least one digit to the left and two digits
to the right of the decimal separator.

"Percent" Displays number multiplied by 100 with a
percent sign (%) appended immediately to

http://go.microsoft.com/fwlink/?LinkId=219172�

 280

Format specification Description

the right; always displays two digits to the
right of the decimal separator.

"Scientific" Uses standard scientific notation, providing
two significant digits.

"Yes/No" Displays No if number is 0; otherwise,
displays Yes.

"True/False" Displays False if number is 0; otherwise,
displays True.

"On/Off" Displays Off if number is 0; otherwise,
displays On.

Remarks
Note that format strings are based on Visual Basic (OLE Automation) and therefore
might have slightly different behavior than the format strings used by the .NET
Framework. Abbreviations such as “P” and “x” are not supported. Any other strings that
you provide as an argument to the FORMAT function are interpreted as defining a
custom format.

• If value is BLANK() the function returns an empty string.
• If format_string is BLANK(), the value is formatted with a "General Number"

format.
Example
Description
The following samples show the usage of different predefined formatting strings to
format a numeric value.
Code
FORMAT(12345.67, "General Number")

FORMAT(12345.67, "Currency")

FORMAT(12345.67, "Fixed")

FORMAT(12345.67, "Standard")

FORMAT(12345.67, "Percent")

FORMAT(12345.67, "Scientific")

Comments
The above expressions return the following results:

Important

 281

12345.67 "General Number" displays the number with no formatting.
$12,345.67 "Currency" displays the number with your currency locale formatting. The
sample here shows the default United States currency formatting.
12345.67 "Fixed" displays at least one digit to the left of the decimal separator and two
digits to the right of the decimal separator.
12,345.67 " Standard " displays at least one digit to the left of the decimal separator and
two digits to the right of the decimal separator, and includes thousand separators. The
sample here shows the default United States number formatting.
1,234,567.00 % "Percent" displays the number as a percentage (multiplied by 100) with
formatting and the percent sign at the right of the number separated by a single space.
1.23E+04 "Scientific" displays the number in scientific notation with two decimal digits.
See Also
FORMAT
Predefined date formats
Custom numeric formats

Custom Numeric Formats for the FORMAT Function
A user-defined format expression for numbers can have from one to three sections
separated by semicolons. If the Style argument of the Format function contains one of
the predefined numeric formats, only one section is allowed.

If you use This is the result

One section only The format expression applies to all values.

Two sections The first section applies to positive values
and zeros; the second applies to negative
values.

Three sections The first section applies to positive values,
the second applies to negative values, and
the third applies to zeros.

Format Specifications
The following table identifies characters you can use to create user-defined number
formats.

Format specification Description

None Displays the number with no formatting.

 282

Format specification Description

0 (zero character) Digit placeholder. Displays a digit or a zero.
If the expression has a digit in the position
where the zero appears in the format
string, displays the digit; otherwise, displays
a zero in that position.
If the number has fewer digits than there
are zeros (on either side of the decimal) in
the format expression, displays leading or
trailing zeros. If the number has more digits
to the right of the decimal separator than
there are zeros to the right of the decimal
separator in the format expression, rounds
the number to as many decimal places as
there are zeros. If the number has more
digits to the left of the decimal separator
than there are zeros to the left of the
decimal separator in the format expression,
displays the extra digits without
modification.

Digit placeholder. Displays a digit or
nothing. If the expression has a digit in the
position where the # character appears in
the format string, displays the digit;
otherwise, displays nothing in that position.
This symbol works like the 0 digit
placeholder, except that leading and
trailing zeros aren't displayed if the number
has fewer digits than there are # characters
on either side of the decimal separator in
the format expression.

. (dot character) Decimal placeholder. The decimal
placeholder determines how many digits
are displayed to the left and right of the
decimal separator. If the format expression
contains only # characters to the left of this
symbol; numbers smaller than 1 begin with
a decimal separator. To display a leading
zero displayed with fractional numbers, use
zero as the first digit placeholder to the left
of the decimal separator. In some locales, a

 283

Format specification Description

comma is used as the decimal separator.
The actual character used as a decimal
placeholder in the formatted output
depends on the number format recognized
by your system. Thus, you should use the
period as the decimal placeholder in your
formats even if you are in a locale that uses
a comma as a decimal placeholder. The
formatted string will appear in the format
correct for the locale.

% Percent placeholder. Multiplies the
expression by 100. The percent character
(%) is inserted in the position where it
appears in the format string.

, (comma character) Thousand separator. The thousand
separator separates thousands from
hundreds within a number that has four or
more places to the left of the decimal
separator. Standard use of the thousand
separator is specified if the format contains
a thousand separator surrounded by digit
placeholders (0 or #).
A thousand separator immediately to the
left of the decimal separator (whether or
not a decimal is specified) or as the
rightmost character in the string means
"scale the number by dividing it by 1,000,
rounding as needed." Numbers smaller
than 1,000 but greater or equal to 500 are
displayed as 1, and numbers smaller than
500 are displayed as 0. Two adjacent
thousand separators in this position scale
by a factor of 1 million, and an additional
factor of 1,000 for each additional
separator.
Multiple separators in any position other
than immediately to the left of the decimal
separator or the rightmost position in the
string are treated simply as specifying the
use of a thousand separator. In some

 284

Format specification Description

locales, a period is used as a thousand
separator. The actual character used as the
thousand separator in the formatted
output depends on the Number Format
recognized by your system. Thus, you
should use the comma as the thousand
separator in your formats even if you are in
a locale that uses a period as a thousand
separator. The formatted string will appear
in the format correct for the locale.
For example, consider the three following
format strings:
"#,0.", which uses the thousands separator
to format the number 100 million as the
string "100,000,000".
"#0,.", which uses scaling by a factor of one
thousand to format the number 100 million
as the string "100000".
"#,0,.", which uses the thousands separator
and scaling by one thousand to format the
number 100 million as the string "100,000".

: (colon character) Time separator. In some locales, other
characters may be used to represent the
time separator. The time separator
separates hours, minutes, and seconds
when time values are formatted. The actual
character used as the time separator in
formatted output is determined by your
system settings.

/ (forward slash character) Date separator. In some locales, other
characters may be used to represent the
date separator. The date separator
separates the day, month, and year when
date values are formatted. The actual
character used as the date separator in
formatted output is determined by your
system settings.

E- , E+ , e- , e+ Scientific format. If the format expression
contains at least one digit placeholder (0 or

 285

Format specification Description

#) to the left of E-, E+, e-, or e+, the
number is displayed in scientific format and
E or e is inserted between the number and
its exponent. The number of digit
placeholders to the left determines the
number of digits in the exponent. Use E- or
e- to place a minus sign next to negative
exponents. Use E+ or e+ to place a minus
sign next to negative exponents and a plus
sign next to positive exponents. You must
also include digit placeholders to the right
of this symbol to get correct formatting.

- + $ () Literal characters. These characters are
displayed exactly as typed in the format
string. To display a character other than
one of those listed, precede it with a
backslash (\) or enclose it in double
quotation marks (" ").

\ (backward slash character) Displays the next character in the format
string. To display a character that has
special meaning as a literal character,
precede it with a backslash (\). The
backslash itself isn't displayed. Using a
backslash is the same as enclosing the next
character in double quotation marks. To
display a backslash, use two backslashes
(\\).
Examples of characters that can't be
displayed as literal characters are the date-
formatting and time-formatting characters
(a, c, d, h, m, n, p, q, s, t, w, y, /, and :), the
numeric-formatting characters (#, 0, %, E, e,
comma, and period), and the string-
formatting characters (@, &, <, >, and !).

"ABC" Displays the string inside the double
quotation marks (" "). To include a string in
the style argument from within code, you
must use Chr(34) to enclose the text (34 is
the character code for a quotation mark

 286

Format specification Description

(")).

The following table contains some sample format expressions for numbers. (These
examples all assume that your system's locale setting is English-U.S.) The first column
contains the format strings for the Format function; the other columns contain the
resulting output if the formatted data has the value given in the column headings.

Format (Style) "5" formatted
as

"-5" formatted
as

"0.5" formatted
as

"0" formatted
as

Zero-length string ("") 5 -5 0.5 0

0 5 -5 1 0

0.00 5.00 -5.00 0.50 0.00

#,##0 5 -5 1 0

$#,##0;($#,##0) $5 ($5) $1 $0

$#,##0.00;($#,##0.00) $5.00 ($5.00) $0.50 $0.00

0% 500% -500% 50% 0%

0.00% 500.00% -500.00% 50.00% 0.00%

0.00E+00 5.00E+00 -5.00E+00 5.00E-01 0.00E+00

0.00E-00 5.00E00 -5.00E00 5.00E-01 0.00E00

"$#,##0;;\Z\e\r\o" $5 $-5 $1 Zero

Remarks
If you include semicolons with nothing between them, the missing section is printed
using the format of the positive value.
See Also
FORMAT
Predefined numeric formats
Custom date-time formats

 287

Pre-defined Date and Time formats for the FORMAT Function
The following table identifies the predefined date and time format names. If you use
strings other than these predefined strings, they will be interpreted as a custom date and
time format.

Format specification Description

"General Date" Displays a date and/or time. For example,
3/12/2008 11:07:31 AM. Date display is
determined by your application's current
culture value.

"Long Date" or "Medium Date" Displays a date according to your current
culture's long date format. For example,
Wednesday, March 12, 2008.

"Short Date" Displays a date using your current culture's
short date format. For example, 3/12/2008.

"Long Time" or "Medium Time" Displays a time using your current culture's
long time format; typically includes hours,
minutes, seconds. For example, 11:07:31
AM.

"Short Time" Displays a time using your current culture's
short time format. For example, 11:07 AM.

Remarks
The formatting strings are based on Visual Basic (OLE Automation) and not the .NET
Framework formatting strings; therefore, your results might be slightly different than
what you expect from .NET format strings. Note that abbreviations such as “D” for Long
Date and “t” for Short Time are not supported.

• If value is BLANK() the function returns an empty string.
• If format_string is BLANK(), the value is formatted with a "General Date" format.

See Also
Custom Date Formats

Custom Date and Time formats for the FORMAT Function
The following table shows characters you can use to create user-defined date/time
formats.

Important

 288

Format specification Description

(:) Time separator. In some locales, other
characters may be used to represent the
time separator. The time separator
separates hours, minutes, and seconds
when time values are formatted. The actual
character that is used as the time separator
in formatted output is determined by your
application's current culture value.

(/) Date separator. In some locales, other
characters may be used to represent the
date separator. The date separator
separates the day, month, and year when
date values are formatted. The actual
character that is used as the date separator
in formatted output is determined by your
application's current culture.

(%) Used to indicate that the following
character should be read as a single-letter
format without regard to any trailing
letters. Also used to indicate that a single-
letter format is read as a user-defined
format. See what follows for additional
details.

d Displays the day as a number without a
leading zero (for example, 1). Use %d if this
is the only character in your user-defined
numeric format.

dd Displays the day as a number with a
leading zero (for example, 01).

ddd Displays the day as an abbreviation (for
example, Sun).

dddd Displays the day as a full name (for
example, Sunday).

M Displays the month as a number without a
leading zero (for example, January is
represented as 1). Use %M if this is the only

 289

Format specification Description

character in your user-defined numeric
format.

MM Displays the month as a number with a
leading zero (for example, 01/12/01).

MMM Displays the month as an abbreviation (for
example, Jan).

MMMM Displays the month as a full month name
(for example, January).

gg Displays the period/era string (for example,
A.D.).

h Displays the hour as a number without
leading zeros using the 12-hour clock (for
example, 1:15:15 PM). Use %h if this is the
only character in your user-defined
numeric format.

hh Displays the hour as a number with leading
zeros using the 12-hour clock (for example,
01:15:15 PM).

H Displays the hour as a number without
leading zeros using the 24-hour clock (for
example, 1:15:15). Use %H if this is the only
character in your user-defined numeric
format.

HH Displays the hour as a number with leading
zeros using the 24-hour clock (for example,
01:15:15).

m Displays the minute as a number without
leading zeros (for example, 12:1:15). Use
%m if this is the only character in your
user-defined numeric format.

mm Displays the minute as a number with
leading zeros (for example, 12:01:15).

s Displays the second as a number without
leading zeros (for example, 12:15:5). Use %s
if this is the only character in your user-
defined numeric format.

 290

Format specification Description

ss Displays the second as a number with
leading zeros (for example, 12:15:05).

f Displays fractions of seconds. For example
ff displays hundredths of seconds, whereas
ffff displays ten-thousandths of seconds.
You may use up to seven f symbols in your
user-defined format. Use %f if this is the
only character in your user-defined
numeric format.

t Uses the 12-hour clock and displays an
uppercase A for any hour before noon;
displays an uppercase P for any hour
between noon and 11:59 P.M. Use %t if this
is the only character in your user-defined
numeric format.

tt For locales that use a 12-hour clock,
displays an uppercase AM with any hour
before noon; displays an uppercase PM
with any hour between noon and 11:59
P.M.
For locales that use a 24-hour clock,
displays nothing.

y Displays the year number (0-9) without
leading zeros. Use %y if this is the only
character in your user-defined numeric
format.

yy Displays the year in two-digit numeric
format with a leading zero, if applicable.

yyy Displays the year in four-digit numeric
format.

yyyy Displays the year in four-digit numeric
format.

z Displays the timezone offset without a
leading zero (for example, -8). Use %z if
this is the only character in your user-
defined numeric format.

 291

Format specification Description

zz Displays the timezone offset with a leading
zero (for example, -08)

zzz Displays the full timezone offset (for
example, -08:00)

Remarks
Formatting strings are case sensitive. Different formatting can be obtained by using a
different case. For example, when formatting a date value with the string "D" you get the
date in the long format (according to your current locale). However, if you change the
case to "d" you get the date in the short format. Also, unexpected results or an error
might occur if the intended formatting does not match the case of any defined format
string.
Date/Time formatting uses the current user locale to determine the ultimate format of
the string. For example, to format the date March 18, 1995, with the following format
string "M/d/yyyy", if the user locale is set to the United States of America (en-us) the
result is '3/12/1995', but if the user locale is set to Germany (de-de) the result is
'18.03.1995'.
See Also
FORMAT
Custom numeric formats
Predefined date and time formats

LEFT Function
Returns the specified number of characters from the start of a text string.
Syntax

LEFT(<text>, <num_chars>)
Parameters

Term Definition

text The text string containing the characters
you want to extract, or a reference to a
column that contains text.

num_chars (optional) The number of characters you
want LEFT to extract; if omitted, 1.

 292

Property Value/Return Value
A text string.
Remarks
Whereas Microsoft Excel contains different functions for working with text in single-byte
and double-byte character languages, DAX works with Unicode and stores all characters
as the same length; therefore, a single function is enough.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following example returns the first five characters of the company name in the
column [ResellerName] and the first five letters of the geographical code in the column
[GeographyKey] and concatenates them, to create an identifier.
Code
=CONCATENATE(LEFT('Reseller'[ResellerName],LEFT(GeographyKey,3))

Comments
If the num_chars argument is a number that is larger than the number of characters
available, the function returns the maximum characters available and does not raise an
error. For example, the column [GeographyKey] contains numbers such as 1, 12 and 311;
therefore the result also has variable length.
See Also
Text functions

LEN Function
Returns the number of characters in a text string.
Syntax

LEN(<text>)
Parameters

Term Definition

text The text whose length you want to find, or
a column that contains text. Spaces count
as characters.

http://go.microsoft.com/fwlink/?LinkId=219171�

 293

Return Value
A whole number indicating the number of characters in the text string.
Exceptions
Remarks
Whereas Microsoft Excel has different functions for working with single-byte and
double-byte character languages, DAX uses Unicode and stores all characters with the
same length.
Therefore, LEN always counts each character as 1, no matter what the default language
setting is.
If you use LEN with a column that contains non-text values, such as dates or Booleans,
the function implicitly casts the value to text, using the current column format.
Example
Description
The following formula sums the lengths of addresses in the columns, [AddressLine1] and
[AddressLine2].
Code
=LEN([AddressLine1])+LEN([AddressLine2)

See Also
Text functions

LOWER Function
Converts all letters in a text string to lowercase.
Syntax

LOWER(<text>)
Parameters

Term Definition

text The text you want to convert to lowercase,
or a reference to a column that contains
text.

Property Value/Return Value
Text in lowercase.
Remarks

 294

Characters that are not letters are not changed. For example, the formula
=LOWER("123ABC") returns 123abc.
Example
Description
The following formula gets each row in the column, [ProductCode], and converts the
value to all lowercase. Numbers in the column are not affected.
Code
=LOWER('New Products'[ProductCode])

See Also
Text functions

MID Function
Returns a string of characters from the middle of a text string, given a starting position
and length.
Syntax

MID(<text>, <start_num>, <num_chars>)
Parameters

Term Definition

text The text string from which you want to
extract the characters, or a column that
contains text.

start_num The position of the first character you want
to extract. Positions start at 1.

num_chars The number of characters to return.

Property Value/Return Value
A string of text of the specified length.
Remarks
Whereas Microsoft Excel has different functions for working with single-byte and
double-byte characters languages, DAX uses Unicode and stores all characters with the
same length.
Example
Description

 295

The following examples return the same results, the first 5 letters of the column,
[ResellerName]. The first example uses the fully qualified name of the column and
specifies the starting point; the second example omits the table name and the
parameter, num_chars.
Code
=MID('Reseller'[ResellerName],5,1))

=MID([ResellerName,5])

Comments
The results are the same if you use the following formula:
=LEFT([ResellerName],5)
See Also
Text functions

REPLACE Function
REPLACE replaces part of a text string, based on the number of characters you specify,
with a different text string.
Syntax

REPLACE(<old_text>, <start_num>, <num_chars>, <new_text>)
Parameters

Term Definition

old_text The string of text that contains the
characters you want to replace, or a
reference to a column that contains text.

start_num The position of the character in old_text
that you want to replace with new_text.

num_chars The number of characters that you want to
replace.

Warning
If the argument, num_chars, is a
blank or references a column that
evaluates to a blank, the string for
new_text is inserted at the position,
start_num, without replacing any
characters. This is the same

 296

Term Definition

behavior as in Excel.

new_text The replacement text for the specified
characters in old_text.

Property Value/Return Value
A text string.
Remarks
Whereas Microsoft Excel has different functions for use with single-byte and double-byte
character languages, DAX uses Unicode and therefore stores all characters as the same
length.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example
Description
The following formula creates a new calculated column that replaces the first two
characters of the product code in column, [ProductCode], with a new two-letter code,
OB.
Code
=REPLACE('New Products'[Product Code],1,2,"OB")

See Also
Text functions
SUBSTITUTE (DAX)

REPT Function
Repeats text a given number of times. Use REPT to fill a cell with a number of instances
of a text string.
Syntax

REPT(<text>, <num_times>)
Parameters

Term Definition

text The text you want to repeat.

http://go.microsoft.com/fwlink/?LinkId=219171�

 297

Term Definition

num_times A positive number specifying the number
of times to repeat text.

Property Value/Return Value
A string containing the changes.
Remarks
If number_times is 0 (zero), REPT returns a blank.
If number_times is not an integer, it is truncated.
The result of the REPT function cannot be longer than 32,767 characters, or REPT returns
an error.
Example: Repeating Literal Strings
Description
The following example returns the string, 85, repeated three times.
Code
=REPT("85",3)

Example: Repeating Column Values
Description
The following example returns the string in the column, [MyText], repeated for the
number of times in the column, [MyNumber]. Because the formula extends for the entire
column, the resulting string depends on the text and number value in each row.
Code
=REPT([MyText],[MyNumber])

Comments

MyText MyNumber CalculatedColumn1

Text 2 TextText

Number 0

85 3 858585

See Also
Text functions

 298

RIGHT Function
RIGHT returns the last character or characters in a text string, based on the number of
characters you specify.
Syntax

RIGHT(<text>, <num_chars>)
Parameters

Term Definition

text The text string that contains the characters
you want to extract, or a reference to a
column that contains text.

num_chars (optional) The number of characters you
want RIGHT to extract; is omitted, 1. You
can also use a reference to a column that
contains numbers.

If the column reference does not contain text, it is implicitly cast as text.
Property Value/Return Value
A text string containing the specified right-most characters.
Remarks
RIGHT always counts each character, whether single-byte or double-byte, as 1, no matter
what the default language setting is.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171
Example: Returning a Fixed Number of Characters
Description
The following formula returns the last two digits of the product code in the New
Products table.
Code
=RIGHT('New Products'[ProductCode],2)

Example: Using a Column Reference to Specify Character Count
Description

http://go.microsoft.com/fwlink/?LinkId=219171�

 299

The following formula returns a variable number of digits from the product code in the
New Products table, depending on the number in the column, MyCount. If there is no
value in the column, MyCount, or the value is a blank, RIGHT also returns a blank.
Code
=RIGHT('New Products'[ProductCode],[MyCount])

See Also
Text functions
LEFT
MID

SEARCH Function
Returns the number of the character at which a specific character or text string is first
found, reading left to right. Search is case-insensitive and accent sensitive.
Syntax

SEARCH(<find_text>, <within_text>[, [<start_num>][, <NotFoundValue>]])
Parameters

Term Definition

find_text The text that you want to find.
You can use wildcard characters — the
question mark (?) and asterisk (*) — in
find_text. A question mark matches any
single character; an asterisk matches any
sequence of characters. If you want to find
an actual question mark or asterisk, type a
tilde (~) before the character.

within_text The text in which you want to search for
find_text, or a column containing text.

start_num (optional) The character position in
within_text at which you want to start
searching. If omitted, 1.

NotFoundValue (optional) The value that should be
returned when the operation does not find
a matching substring, typically 0, -1, or
BLANK().

 300

Return Value
The number of the starting position of the first text string from the first character of the
second text string.
Remarks
1. The search function is case insensitive. Searching for "N" will find the first occurrence

of 'N' or 'n'.
2. The search function is accent sensitive. Searching for "á" will find the first occurrence

of 'á' but no occurrences of 'a', 'à', or the capitalized versions 'A', 'Á'.
3. By using this function, you can locate one text string within a second text string, and

return the position where the first string starts.
4. You can use the SEARCH function to determine the location of a character or text

string within another text string, and then use the MID function to return the text, or
use the REPLACE function to change the text.

5. If the find_text cannot be found in within_text, the formula returns an error. This
behavior is like Excel, which returns #VALUE if the substring is not found. Nulls in
within_text will be interpreted as an empty string in this context.

This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example: Search within a String
Description
The following formula finds the position of the letter "n" in the word "printer".
Code
=SEARCH("n","printer")

Comments
The formula returns 4 because "n" is the fourth character in the word "printer."
Example: Search within a Column
Description
You can use a column reference as an argument to SEARCH. The following formula finds
the position of the character "-" (hyphen) in the column, [PostalCode].
Code
=SEARCH("-",[PostalCode])

Comments
The return result is a column of numbers, indicating the index position of the hyphen.
Example: Error-Handling with SEARCH
Description

http://go.microsoft.com/fwlink/?LinkId=219171�

 301

The formula in the preceding example will fail if the search string is not found in every
row of the source column. Therefore, the next example demonstrates how to use
IFERROR with the SEARCH function, to ensure that a valid result is returned for every row.
The following formula finds the position of the character "-" within the column, and
returns -1 if the string is not found.
Code
= IFERROR(SEARCH("-",[PostalCode]),-1)

Comments
Note that the data type of the value that you use as an error output must match the data
type of the non-error output type. In this case, you provide a numeric value to be output
in case of an error because SEARCH returns an integer value.
However, you could also return a blank (empty string) by using BLANK() as the second
argument to IFERROR.
See Also
MID
REPLACE
TEXT functions

SUBSTITUTE Function
Replaces existing text with new text in a text string.
Syntax

SUBSTITUTE(<text>, <old_text>, <new_text>, <instance_num>)
Parameters

Term Definition

text The text in which you want to substitute
characters, or a reference to a column
containing text.

old_text The existing text that you want to replace.

new_text The text you want to replace old_text with.

instance_num (optional) The occurrence of old_text you
want to replace. If omitted, every instance
of old_text is replaced

Property Value/Return Value

 302

A string of text.
Remarks
Use the SUBSTITUTE function when you want to replace specific text in a text string; use
the REPLACE function when you want to replace any text of variable length that occurs in
a specific location in a text string.
The SUBSTITUTE function is case-sensitive. If case does not match between text and
old_text, SUBSTITUTE will not replace the text.
This DAX function may return different results when used in a model that is deployed
and then queried in DirectQuery mode. For more information about semantic differences
in DirectQuery mode, see http://go.microsoft.com/fwlink/?LinkId=219171.
Example: Substitution within a String
Description
The following formula creates a copy of the column [Product Code] that substitutes the
new product code NW for the old product code PA wherever it occurs in the column.
Code
=SUBSTITUTE([Product Code], "NW", "PA")

See Also
Text functions
REPLACE (DAX)

TRIM Function
Removes all spaces from text except for single spaces between words.
Syntax

TRIM(<text>)
Parameters

Term Definition

text The text from which you want spaces
removed, or a column that contains text.

Property Value/Return Value
The string with spaces removed.
Remarks
Use TRIM on text that you have received from another application that may have
irregular spacing.

http://go.microsoft.com/fwlink/?LinkId=219171�

 303

The TRIM function was originally designed to trim the 7-bit ASCII space character (value
32) from text. In the Unicode character set, there is an additional space character called
the nonbreaking space character that has a decimal value of 160. This character is
commonly used in Web pages as the HTML entity, . By itself, the TRIM function
does not remove this nonbreaking space character. For an example of how to trim both
space characters from text, see Remove spaces and nonprinting characters from text.
Example
Description
The following formula creates a new string that does not have trailing white space.
Code
=TRIM("A column with trailing spaces. ")

Comments
When you create the formula, the formula is propagated through the row just as you
typed it, so that you see the original string in each formula and the results are not
apparent. However, when the formula is evaluated the string is trimmed.
You can verify that the formula produces the correct result by checking the length of the
calculated column created by the previous formula, as follows:

=LEN([Calculated Column 1])

See Also
Text functions

UPPER Function
Converts a text string to all uppercase letters
Syntax

UPPER (<text>)
Parameters

Term Definition

text The text you want converted to uppercase,
or a reference to a column that contains
text.

Property Value/Return Value
Same text, in uppercase.
Example

 304

Description
The following formula converts the string in the column, [ProductCode], to all uppercase.
Non-alphabetic characters are not affected.
Code
=UPPER(['New Products'[Product Code])

See Also
Text functions
LOWER (DAX)

VALUE Function
Converts a text string that represents a number to a number.
Syntax

VALUE(<text>)
Parameters

Term Definition

text The text to be converted.

Return Value
The converted number in decimal data type.
Remarks
The value passed as the text parameter can be in any of the constant, number, date, or
time formats recognized by Microsoft Excel and the PowerPivot Add-in. If text is not in
one of these formats, an error is returned. For more information about PowerPivot data
types, see Data Types.
You do not generally need to use the VALUE function in a formula because the
PowerPivot add-in implicitly converts text to numbers as necessary.
You can also use column references. For example, if you have a column that contains
mixed number types, VALUE can be used to convert all values to a single numeric data
type. However, if you use the VALUE function with a column that contains mixed
numbers and text, the entire column is flagged with an error, because not all values in all
rows can be converted to numbers.
Example
Description
The following formula converts the typed string, "3", into the numeric value 3.

http://msdn.microsoft.com/en-us/library/48f23cba-07df-4a0e-b077-8ffccd344552(SQL.110)�

 305

Code
=VALUE("3")

Comments
See Also
Text functions

Formula Compatibility in DirectQuery Mode
The Data Analysis Expression language (DAX) can be used to create measures and other
custom formulas that you use in tabular models and in PowerPivot workbooks. In almost
every respect, the models that you create in these two environments are identical, and
you can use the same measures, relationships, and KPIs, etc. However, if you build a
tabular model and deploy it in DirectQuery mode, there are some restrictions on the
formulas that you can use. This topic provides an overview of the differences, lists the
functions that are not supported in DirectQuery mode, and lists the functions that are
supported but might return different results.
Within this topic, we use the term in-memory model to refer to both PowerPivot models,
which use a local cache, as well as tabular models, which are fully hosted in memory data
on an Analysis Services server running in Tabular mode. We use DirectQuery models to
refer to tabular models that have been deployed in DirectQuery mode. For information
about DirectQuery mode, see DQ Intro.
Semantic Difference s

Describes the types of differences that might arise when the same formula is used to
DirectQuery mode.

• Comparisons

• Casts

• Mathematical functions and arithmetic operations

• Supported Numeric and Date-Time Ranges

• Currency

• Aggregation Functions

• Text Functions

Functions Supported in DirectQuery Mode
This section lists functions that can be used in DirectQuery mode, but which might
return different results.

Functions Not Supported in DirectQuery Mode
The section lists functions that cannot be used in models deployed in DirectQuery
mode.

http://msdn.microsoft.com/en-us/library/45ad2965-05ec-4fb1-a164-d8060b562ea5(SQL.110)�

 306

Functions that are not in either of these lists are expected to behave identically
regardless of the model storage or query mode.

Overview of Differences between In-Memory and DirectQuery Mode
Queries on a model deployed in DirectQuery mode can return different results than
when the same model is deployed in-memory, because data is fetched directly from a
relational data store and aggregations required by formulas are performed using the
relevant relational engine, rather than using the xVelocity in-memory analytics engine
(VertiPaq) for storage and calculation.
For example, there are differences in the way that certain relational data stores handle
numeric values, dates, nulls, and so forth.
In contrast, the DAX language is intended to emulate as closely as possible the behavior
of functions in Microsoft Excel. For example, when handling nulls, empty strings and zero
values, Excel attempts to provide the best answer regardless of the precise data type,
and therefore the xVelocity engine does the same. However, when a tabular model is
deployed in DirectQuery mode and passes formulas to a relational data source for
evaluation, the data must be handled according to the semantics of the relational data
source, which typically require distinct handling of empty strings vs. nulls. For this reason,
the same formula might return a different result when evaluated against cached data
and against data fetched solely from the relational store.
Additionally, some functions cannot be used at all in DirectQuery mode because the
calculation would require that the data in the current context be sent to the relational
data source as a parameter. For example, measures in a PowerPivot workbook often use
time intelligence functions that reference date ranges available within the workbook.
Such formulas generally cannot be used in DirectQuery mode.

List of Semantic Differences
This section lists the types of semantic differences that you can expect, and describes any
limitations that might apply to the usage of functions or to query results.

Comparisons
DAX in in-memory models supports comparisons of two expressions that resolve to
scalar values of different data types. However, models that are deployed in DirectQuery
mode use the data types and comparison operators of the relational engine, and
therefore might return different results.
The following comparisons will always generate an error when used in a calculation on a
DirectQuery data source:
• Numeric data type compared to any string data type
• Numeric data type compared to a Boolean value
• Any string data type compared to a Boolean value

 307

In general, DAX is more forgiving of data type mismatches in in-memory models, and
will attempt an implicit cast of values up to two times, as described in this section.
However, formulas sent to a relational data store in DirectQuery mode are evaluated
more strictly, following the rules of the relational engine, and are more likely to fail.
Comparisons of strings and numbers

EXAMPLE: “2” < 3

The formula compares a text string to a number. The expression is true in both
DirectQuery mode and in-memory models.

In an in-memory model, the result is true because numbers as strings are implicitly cast
to a numerical data type for comparisons with other numbers. SQL also implicitly casts
text numbers as numbers for comparison to numerical data types.

Note that this represents a change in behavior from the first version of PowerPivot,
which would return false, because the text “2” would always be considered larger than
any number.

Comparison of text with Boolean

EXAMPLE: “VERDADERO” = TRUE

This expression compares a text string with a Boolean value. In general, for DirectQuery
or In-Memory models, comparing a string value to a Boolean value results in an error.
The only exceptions to the rule are when the string contains the word true or the word
false; if the string contains any of true or false values, a conversion to Boolean is made
and the comparison takes place giving the logical result.

Comparison of nulls

EXAMPLE: EVALUATE ROW("X", BLANK() = BLANK())

This formula compares the SQL equivalent of a null to a null. It returns true in in-
memory and DirectQuery models; a provision is made in DirectQuery model to
guarantee similar behavior to in-memory model.

Note that in Transact-SQL, a null is never equal to a null. However, in DAX, a blank is
equal to another blank. This behavior is the same for all in-memory models. It is
important to note that DirectQuery mode uses, most of, the semantics of SQL Server;
but, in this case it separates from it giving a new behavior to NULL comparisons.

Casts

There is no cast function as such in DAX, but implicit casts are performed in many
comparison and arithmetic operations. It is the comparison or arithmetic operation that
determines the data type of the result. For example,
• Boolean values are treated as numeric in arithmetic operations, such as TRUE + 1, or

the function MIN applied to a column of Boolean values. A NOT operation also
returns a numeric value.

 308

• Boolean values are always treated as logical values in comparisons and when used
with EXACT, AND, OR, &&, or ||.

Cast from string to Boolean

In in-memory and DirectQuery models, casts are permitted to Boolean values from
these strings only: “” (empty string), “true”, “false”; where an empty string casts to
false value.

Casts to the Boolean data type of any other string results in an error.

Cast from string to date/time

In DirectQuery mode, casts from string representations of dates and times to actual
datetime values behave the same way as they do in SQL Server.

For information about the rules governing casts from string to datetime data types in
PowerPivot models, see the DAX Syntax Specification.

Models that use the in-memory data store support a more limited range of text formats
for dates than the string formats for dates that are supported by SQL Server. However,
DAX supports custom date and time formats. For more information, see DAX
Predefined Date formats and Custom date formats.

Cast from string to other non Boolean values

When casting from strings to non-Boolean values, DirectQuery mode behaves the same
as SQL Server. For more information, see Cast and Convert.

Cast from numbers to string not allowed

EXAMPLE: CONCATENATE(102,”,345”)

Casting from numbers to strings is not allowed in SQL Server.

This formula returns an error in tabular models and in DirectQuery mode; however, the
formula produces a result in PowerPivot.

No support for two-try casts in DirectQuery

In-memory models often attempt a second cast when the first one fails. This never
happens in DirectQuery mode.

EXAMPLE: TODAY() + “13:14:15”

In this expression, the first parameter has type datetime and second parameter has type
string. However, the casts when combining the operands are handled differently. DAX
will perform an implicit cast from string to double. In in-memory models, the formula
engine attempts to cast directly to double, and if that fails, it will try to cast the string to
datetime.

In DirectQuery mode, only the direct cast from string to double will be applied. If this
cast fails, the formula will return an error.

http://msdn.microsoft.com/en-us/library/d26c490f-b1f3-4245-8527-a8f815431d97(SQL.110)�
http://msdn.microsoft.com/en-us/library/d26c490f-b1f3-4245-8527-a8f815431d97(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad86b4bf-e48b-44f8-8beb-86084cbc53b3(SQL.110)�
http://msdn.microsoft.com/en-us/library/a87d0850-c670-4720-9ad5-6f5a22343ea8(SQL.110)�

 309

Math Functions and Arithmetic Operations
Some mathematical functions will return different results in DirectQuery mode, because
of differences in the underlying data type or the casts that can be applied in operations.
Also, the restrictions described above on the allowed range of values might affect the
outcome of arithmetic operations.
Order of addition

When you create a formula that adds a series of numbers, an in-memory model might
process the numbers in a different order than a DirectQuery model. Therefore, when
you have many very large positive numbers and very large negative numbers, you may
get an error in one operation and results in another operation.

Use of the POWER function

EXAMPLE: POWER(-64, 1/3)

In DirectQuery mode, the POWER function cannot use negative values as the base when
raised to a fractional exponent. This is the expected behavior in SQL Server.

In an in-memory model, the formula returns -4.

Numerical overflow operations

In Transact-SQL, operations that result in a numerical overflow return an overflow error;
therefore, formulas that result in an overflow also raise an error in DirectQuery mode.

However, the same formula when used in an in-memory model returns an eight-byte
integer. That is because the formula engine does not perform checks for numerical
overflows.

LOG functions with blanks return different results

SQL Server handles nulls and blanks differently than the xVelocity engine. As a result,
the following formula returns an error in DirectQuery mode, but return infinity in in-
memory mode.

EXAMPLE: LOG(blank())

The same limitations apply to the other logarithmic functions: LOG10 and LN.

For more information about the blank data type in DAX, see DAX Syntax
Specification.

Division by 0 and division by Blank

In DirectQuery mode, division by zero (0) or division by BLANK will always result in an
error. SQL Server does not support the notion of infinity, and because the natural result
of any division by 0 is infinity, the result is an error. However, SQL Server supports
division by nulls, and the result must always equal null.

Rather than return different results for these operations, in DirectQuery mode, both
types of operations (division by zero and division by null) return an error.

Note that, in Excel and in PowerPivot models, division by zero also returns an error.
Division by a blank returns a blank.

 310

The following expressions are all valid in in-memory models, but will fail in DirectQuery
mode:

 1/BLANK

 1/0

 0.0/BLANK

 0/0

The expression BLANK/BLANK is a special case that returns BLANK in both for in-
memory models, and in DirectQuery mode.

Supported Numeric and Date-Time Ranges
Formulas in PowerPivot and tabular models in memory are subject to the same
limitations as Excel with regard to maximum allowed values for real numbers and dates.
However, differences can arise when the maximum value is returned from a calculation
or query, or when values are converted, cast, rounded, or truncated.
• If values of types Currency and Real are multiplied, and the result is larger than the

maximum possible value, in DirectQuery mode, no error is raised, and a null is
returned.

• In in-memory models, no error is raised, but the maximum value is returned.
In general, because the accepted date ranges are different for Excel and SQL Server,
results can be guaranteed to match only when dates are within the common date range,
which is inclusive of the following dates:
• Earliest date: March 1, 1990
• Latest date: December 31, 9999
If any dates used in formulas fall outside this range, either the formula will result in an
error, or the results will not match.
Floating point values supported by CEILING

EXAMPLE: EVALUATE ROW("x", CEILING(-4.398488E+30, 1))

The Transact-SQL equivalent of the DAX CEILING function only supports values with
magnitude of 10^19 or less. A rule of thumb is that floating point values should be able
to fit into bigint.

Datepart functions with dates that are out of range

Results in DirectQuery mode are guaranteed to match those in in-memory models only
when the date used as the argument is in the valid date range. If these conditions are
not satisfied, either an error will be raised, or the formula will return different results in
DirectQuery than in in-memory mode.

EXAMPLE: MONTH(0) or YEAR(0)

In DirectQuery mode, the expressions return 12 and 1899, respectively.

In in-memory models, the expressions return 1 and 1900, respectively.

 311

EXAMPLE: EOMONTH(0.0001, 1)

The results of this expression will match only when the data supplied as a parameter is
within the valid date range.

EXAMPLE: EOMONTH(blank(), blank()) or EDATE(blank(), blank())

The results of this expression should be the same in DirectQuery mode and in-memory
mode.

Truncation of time values

EXAMPLE: SECOND(1231.04097222222)

In DirectQuery mode, the result is truncated, following the rules of SQL Server, and the
expression evaluates to 59.

In in-memory models, the results of each interim operation are rounded; therefore, the
expression evaluates to 0.

The following example demonstrates how this value is calculated:

1. The fraction of the input (0.04097222222) is multiplied by 24.

2. The resulting hour value (0.98333333328) is multiplied by 60.

3. The resulting minute value is 58.9999999968.

4. The fraction of the minute value (0.9999999968) is multiplied by 60.

5. The resulting second value (59.999999808) rounds up to 60.

6. 60 is equivalent to 0.

SQL Time data type not supported

In-memory models do not support use of the new SQL Time data type. In DirectQuery
mode, formulas that reference columns with this data type will return an error. Time
data columns cannot be imported into an in-memory model.

However, in PowerPivot and in cached models, sometimes the engine casts the time
value to an acceptable data type, and the formula returns a result.

This behavior affects all functions that use a date column as a parameter.

Currency
In DirectQuery mode, if the result of an arithmetic operation has the type Currency, the
value must be within the following range:
• Minimum:
• Maximum:
Combining currency and REAL data types

EXAMPLE: Currency sample 1

 If Currency and Real types are multiplied, and the result is larger than
9223372036854774784 (), DirectQuery mode will not raise an error.

In an in-memory model, an error is raised if the absolute value of the result is larger

 312

than .

Operation results in an out-of-range value

EXAMPLE: Currency sample 2

If operations on any two currency values result in a value that is outside the specified
range, an error is raised in in-memory models, but not in DirectQuery models.

Combining currency with other data types

Division of currency values by values of other numeric types can result in different
results.

Aggregation Functions
Statistical functions on a table with one row return different results. Aggregation
functions over empty tables also behave differently in in-memory models than they do in
DirectQuery mode.
Statistical functions over a table with a single row

If the table that is used as argument contains a single row, in DirectQuery mode,
statistical functions such as STDEV and VAR return null.

In an in-memory model, a formula that uses STDEV or VAR over a table with a single
row returns a division by zero error.

Text Functions
Because relational data stores provide different text data types than does Excel, you may
see different results when searching strings or working with substrings. The length of
strings also can be different.
In general, any string manipulation functions that use fixed-size columns as arguments
can have different results.
Additionally, in SQL Server, some text functions support additional arguments that are
not provided in Excel. If the formula requires the missing argument you can get different
results or errors in the in-memory model.
Operations that return a character using LEFT, RIGHT, etc. may return the correct
character but in a different case, or no results

EXAMPLE: LEFT([“text”], 2)

In DirectQuery mode, the case of the character that is returned is always exactly the
same as the letter that is stored in the database. However, the xVelocity engine uses a
different algorithm for compression and indexing of values, to improve performance.

By default, the Latin1_General collation is used, which is case-insensitive but accent-
sensitive. Therefore, if there are multiple instances of a text string in lower case, upper
case, or mixed case, all instances are considered the same string, and only the first
instance of the string is stored in the index. All text functions that operate on stored
strings will retrieve the specified portion of the indexed form. Therefore, the example

 313

formula would return the same value for the entire column, using the first instance as
the input.

String Storage and Collation in Tabular Models
This behavior also applies to other text functions, including RIGHT, MID, and so forth.

String length affects results

EXAMPLE: SEARCH(“within string”, “sample target text”, 1,
1)

If you search for a string using the SEARCH function, and the target string is longer than
the within string, DirectQuery mode raises an error.

In an in-memory model, the searched string is returned, but with its length truncated to
the length of <within text>.

EXAMPLE: EVALUATE ROW("X", REPLACE("CA", 3, 2, "California")
)

If the length of the replacement string is greater than the length of the original string, in
DirectQuery mode, the formula returns null.

In in-memory models, the formula follows the behavior of Excel, which concatenates the
source string and the replacement string, which returns CACalifornia.

Implicit TRIM in the middle of strings

EXAMPLE: TRIM(“ A sample sentence with leading white space”)

DirectQuery mode translates the DAX TRIM function to the SQL statement
LTRIM(RTRIM(<column>)). As a result, only leading and trailing white space is
removed.

In contrast, the same formula in an in-memory model removes spaces within the string,
following the behavior of Excel.

Implicit RTRIM with use of LEN function

EXAMPLE: LEN(‘string_column’)

Like SQL Server, DirectQuery mode automatically removes white space from the end of
string columns: that is, it performs an implicit RTRIM. Therefore, formulas that use the
LEN function can return different values if the string has trailing spaces.

In-memory supports additional parameters for SUBSTITUTE

EXAMPLE: SUBSTITUTE([Title],”Doctor”,”Dr.”)

EXAMPLE: SUBSTITUTE([Title],”Doctor”,”Dr.”, 2)

In DirectQuery mode, you can use only the version of this function that has three (3)
parameters: a reference to a column, the old text, and the new text. If you use the
second formula, an error is raised.

In in-memory models, you can use an optional fourth parameter to specify the instance
number of the string to replace. For example, you can replace only the second instance,

http://msdn.microsoft.com/en-us/library/8516f0ad-32ee-4688-a304-e705143642ca(SQL.110)�

 314

etc.

Restrictions on string lengths for REPT operations

In in-memory models, the length of a string resulting from an operation using REPT
must be less than 32,767 characters.

This limitation does not apply in DirectQuery mode.

Substring operations return different results depending on character type

EXAMPLE: MID([col], 2, 5)

If the input text is varchar or nvarchar, the result of the formula is always the same.

However, if the text is a fixed-length character and the value for <num_chars> is greater
than the length of the target string, in DirectQuery mode, a blank is added at the end of
the result string.

In an in-memory model, the result terminates at the last string character, with no
padding.

Functions Supported in DirectQuery Mode
The following DAX functions can be used in DirectQuery mode, but with the
qualifications as described in the preceding section.
Text functions
CONCATENATE
FIND
LEFT
LEN
MID
REPLACE
REPT
RIGHT
SUBSTITUTE
TRIM
Statistical functions
COUNT
STDEV.P
STDEV.S
STDEVX.P
STDEVX.S
VAR.P
VAR.S

 315

VARX.P
VARX.S
Date/time functions
DATE
EDATE
EOMONTH
DATE
TIME
SECOND
Math and number functions
CEILING
LN
LOG
LOG10
POWER
DAX Table queries
There are some limitations when you evaluate formulas against a DirectQuery model by
using DAX Table queries. DirectQuery does not support referring to the same column
twice in an ORDER BY clause. The equivalent Transact-SQL statement cannot be created
and the query fails.
In an in-memory model, repeating the ORDER by clause has no effect on the results.

Functions Not Supported in DirectQuery Mode
Some DAX functions are not supported in models that are deployed in DirectQuery
mode. The reasons that a particular function is not supported can include any or a
combination of these reasons:
• The underlying relational engine cannot perform calculations equivalent to those

performed by the xVelocity engine.
• The formula cannot be converted to en equivalent SQL expression.
• The performance of the converted expression and the resulting calculations would be

unacceptable.
The following DAX functions cannot be used in DirectQuery models.
Path functions
PATH
PATHCONTAINS
PATHITEM
PATHITEMREVERSE

 316

PATHLENGTH
Misc functions
COUNTBLANK
FIXED
FORMAT
RAND
RANDBETWEEN
Time intelligence functions: Start and end dates
DATESQTD
DATESYTD
DATESMTD
DATESQTD
DATESINPERIOD
TOTALMTD
TOTALQTD
TOTALYTD
DATESINPERIOD
SAMEPERIODLASTYEAR
PARALLELPERIOD
Time intelligence functions: Balances
OPENINGBALANCEMONTH
OPENINGBALANCEQUARTER
OPENINGBALANCEYEAR
CLOSINGBALANCEMONTH
CLOSINGBALANCEQUARTER
CLOSINGBALANCEYEAR
Time intelligence functions: Previous and next periods
PREVIOUSDAY
PREVIOUSMONTH
PREVIOUSQUARTER
PREVIOUSYEAR
NEXTDAY
NEXTMONTH
NEXTQUARTER
NEXTYEAR

 317

Time intelligence functions: Periods and calculations over periods
STARTOFMONTH
STARTOFQUARTER
STARTOFYEAR
ENDOFMONTH
ENDOFQUARTER
ENDOFYEAR
FIRSTDATE
LASTDATE
DATEADD

See Also
Direct Query Intro

http://msdn.microsoft.com/en-us/library/45ad2965-05ec-4fb1-a164-d8060b562ea5(SQL.110)�

	Cover
	Contents
	Data Analysis Expressions (DAX) Reference
	DAX Syntax Specification for PowerPivot
	DAX Operator Reference for PowerPivot
	Parameter-Naming Conventions
	Understanding Functions for Parent-Child Hierarchies in DAX
	DAX Function Reference
	DAX Queries
	DAX Query Syntax Reference
	Parameters for DAX Queries

	Date and Time Functions
	Time Intelligence Functions
	Filter Functions
	Information Functions
	Logical Functions
	Math and Trig Functions
	Statistical Functions
	Text Functions

	Formula Compatibility in DirectQuery Mode

